569
875] WHICH CUT EACH OTHER AT GIVEN ANGLES.
or, completing the reduction by the substitution of the value of 4/3 2 , this is
y {(Q 2 sin 2 G + R 2 sin 2 B) + 2QR (cos A + cos B cos G)}
+ QB {Q (cos B + cos C cos A) + R (cos G + cos A cos B)}
= ± 4(3QR a/{— (1 — cos 2 A — cos 2 B — cos 2 (7-2 cos A cos B cos G)),
viz. we have thus two values of the radius y (= P); and to each of these there
corresponds a single value of the abscissa x, given by
4/3x = R 2 — Q 2 + 2 (R cos B — Q cos G) y.
The two values become equal, if A+B±G = 7r; in this case the three circles
meet in a pair of points (x 1? y^, (x 1? — yi). In fact, writing A + B + G — 7r, and thence
cos A = — cos (B + G), ’= — cos B cos G + sin B sin G, &c.,
we find
[Q 2 sin 2 C + 2QB (cos A + cos B cos G) + B 2 sin 2 B\ y
+ QR {Q (cos B + cos (7cos A)+ R(cos (7+ cos A cos B)} = 0,
(Q sin G + B sin Bf y + QR (Q sin C + B sin B) sin A =0,
that is,
or, throwing out the factor Q sin G + R sin B, this is
(Q sinC + R sin B) y + QR sin A = 0,
and we then have
4/3x = R 2 - Q 2 - 2 (R cos B - Q cos G) p „
x iismn+ysmG
— t, • n 1 r\——n K-K sin B + Q sin G) (R 2 — Q 2 ) — 2 (R cos B — Q cos G) QR sin J.}.
R sm B + Q sm G y v ' v ^ 1 ^ J
The term in
which is
or, finally
is here
B? ( sin B)
+ R 2 Q ( sin G — 2 sin A cos B)
+ RQ 2 (— sin B + 2 sin A cos G)
+ Q 3 (- sin G),
= R 3 ( sin B)
+ R 2 Q (— sin (7 + 2 sin B cos A)
+ RQ 2 ( sin B — 2 sin G cos A)
+ Q 3 (- sin G)
= (R 2 + Q 2 + 2RQ cos A) (jR sin B — Q sin (7),
= 4/3 2 (R sin B — Q sin G),
— QR sin A
y R sin B + Q sin G ’
¡3 (R sin B — Q sin G)
R sin B + Q sin (7
C. XII.
72