Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 12)

569 
875] WHICH CUT EACH OTHER AT GIVEN ANGLES. 
or, completing the reduction by the substitution of the value of 4/3 2 , this is 
y {(Q 2 sin 2 G + R 2 sin 2 B) + 2QR (cos A + cos B cos G)} 
+ QB {Q (cos B + cos C cos A) + R (cos G + cos A cos B)} 
= ± 4(3QR a/{— (1 — cos 2 A — cos 2 B — cos 2 (7-2 cos A cos B cos G)), 
viz. we have thus two values of the radius y (= P); and to each of these there 
corresponds a single value of the abscissa x, given by 
4/3x = R 2 — Q 2 + 2 (R cos B — Q cos G) y. 
The two values become equal, if A+B±G = 7r; in this case the three circles 
meet in a pair of points (x 1? y^, (x 1? — yi). In fact, writing A + B + G — 7r, and thence 
cos A = — cos (B + G), ’= — cos B cos G + sin B sin G, &c., 
we find 
[Q 2 sin 2 C + 2QB (cos A + cos B cos G) + B 2 sin 2 B\ y 
+ QR {Q (cos B + cos (7cos A)+ R(cos (7+ cos A cos B)} = 0, 
(Q sin G + B sin Bf y + QR (Q sin C + B sin B) sin A =0, 
that is, 
or, throwing out the factor Q sin G + R sin B, this is 
(Q sinC + R sin B) y + QR sin A = 0, 
and we then have 
4/3x = R 2 - Q 2 - 2 (R cos B - Q cos G) p „ 
x iismn+ysmG 
— t, • n 1 r\——n K-K sin B + Q sin G) (R 2 — Q 2 ) — 2 (R cos B — Q cos G) QR sin J.}. 
R sm B + Q sm G y v ' v ^ 1 ^ J 
The term in 
which is 
or, finally 
is here 
B? ( sin B) 
+ R 2 Q ( sin G — 2 sin A cos B) 
+ RQ 2 (— sin B + 2 sin A cos G) 
+ Q 3 (- sin G), 
= R 3 ( sin B) 
+ R 2 Q (— sin (7 + 2 sin B cos A) 
+ RQ 2 ( sin B — 2 sin G cos A) 
+ Q 3 (- sin G) 
= (R 2 + Q 2 + 2RQ cos A) (jR sin B — Q sin (7), 
= 4/3 2 (R sin B — Q sin G), 
— QR sin A 
y R sin B + Q sin G ’ 
¡3 (R sin B — Q sin G) 
R sin B + Q sin (7 
C. XII. 
72
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.