[914
N.
pp. 53—58.]
ith Commensurable
-130, has given, in
: equations (founded
the solution of a
lution of the form
ions involving only
simple form: thus
+ V^)" (2 + V5),
is the proper form
where observe that
(2 + V5)V5, viz. the
y by a factor 2 + \/5
i foregoing equation
the general theory.
914]
ON A SOLUBLE QUINTIC EQUATION.
89
which determine A", B", C", D" in terms of A', B', G\ D', a8, Ay; and then
, A'A" n B'B
A= -&r B
n _ C'G" n DP"
a8 ’ a.8 /З7
which give A, B, G, D.
If now we assume cc = a + /3 + y + 8, and regard A, B, G, D, A', B', C, D',
A", B", C", D", a.8, Ay each as a rational function, we may express x, x 2 , x z , x 5 each
of them by means of rational functions or of rational functions multiplied into
a, A, y, & respectively: thus,
x — ot А А Ay "b 8
x 2 = a? + A 2 A 7 2 + 8 2
= a + /3 + 7 + 3,
= A'A 5(8 G'a D'y
Ay + ol8 a8 Ay ’
2B'y 2A'8 _ * ct
+ ^Ау + ~о8~ + 2а8 + 2 ^ + Пс8~ +
2D'a , 2 G'A
Ay ’
+ 2 a/3 A 2ary + 2a8 + 2/3y + 2/38 + 278
&c.; and we thus obtain
x 5 + qx 3 + rx 2 + sx At
= A+B+G + D
A (20aS + ЗО/З7) (A' A D') A 30 («8 + 20Ay) (5' + C')
+ 3q (A' + B'+G' + D') + 2r(oc8+Ay) + t
f G' 2 5B"Ay 1ЛЛ „ , 10D' 2
+ «1М' + 5 ж + - 5 р + 100 +
+ 1 0«*S* + 20 B" + 20 D" + 30/3=7* + ЗОЛ" /3 7 + бОа/ЗуЗ
/В" 3D" „ . \ /V 2JJ’\
+ q {^ + ns +3a& + ^v +r ws + ~^s) +
a8
(7' 2D / \
^ + ^ + 5 ^-W + f-‘
a8
+ 10/3V + 205" + 20G" + 30a 2 8 2 + 30C" ~ + 60a/3 7 8
Ay
/5" SC" OQ . л /4' 2C"\ )
+ s fe + ^7 + /3,y+ 8 ) + ЧЭу + Эу) + 1
4 Kr+1 £ +e iS w+
105[ 2
Ay
a8
+ 10/3y + 20^" + 205" + 30a 2 S 2 + 305" ~ + 60a/3 7 S
+ 2
^L" 35"
+
Ay Ay
10A' 2
a 8
(ТУ 25'
4- —¡z—b SAy + 6a8 + r -w- + -о- + s
\Ay Ay
8 |б5" + 5i T + 5 + 105" +
( ab ab
A 10a 2 8 2 +
/G" ЗА" _ * N /5' 2A'\ )
+ 3 U + ^ +3aS+6 ^) +? 'U + Y + T
+ 10a*S* + 200'" + 20.4" + 30,OV* + 30,1" A + ОО3/З7О
ab
C. XIII.
12