Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

[914 
914] ON A SOLUBLE QUINTIC EQUATION. 91 
*jyi =0, and the 
ider consideration, 
tained therein, so 
also satisfied. In 
(so that, according to a foregoing remark, we have (2 + V5) VQ = VQi), then we have 
H = 40 (1 + V5) (65 V5 ( 2 + V5) + (18 + 5 V5) VQ}, &c., 
ul' =-2V5(l + V5){ 5(2+ V5)+ VQ}, &c., 
= 20 (1 - V5) { 18 + 13 V5 + V5 VQ}, &c„ 
where observe that the term 2 + V5 is a factor of Q. 
2 S 2 + s = 0. 
Starting from the values of A', B', C', D', we have 
A' = - 2 V5 (1 + V5) {5 (2 + Vo) + VQ}, 
D' = - 2 Vo (1 + Vo) {5 (2 + V5) - VQ}, 
and therefore 
for the root is 
H'D' = 20 (1 + V5) 2 (2 + V5) {25 (2 + V5) - 47 V5}, 
where the last factor is 
/5, 
= 50 — 22 V5, = — 2 V5 (11 — 5 V5), = - V5 (1 - V5) 2 (2 - V5). 
Hence 
/5, 
A'D' = - V5.20 (- 4) 2 (- 1) = 320 V5, 
that is, 
/5, 
A'D' = (aS) 2 ¡3<y — 320 V5, and similarly B'C' = a.8 (/3y) 2 = — 320 V5, 
whence 
A 
a8 = — 4 V5, /3y = 4 V5, and aS + /3y = 0, as above. 
\/5, 
We have, moreover, 
H / = — 2 V5 (1 + V5) {o (2 + V5) + VQ }, 
Vo, 
B' = 2 V5(l- V5){5(2-V5)-VQi}, 
and thence 
V5, 
= 80 {- 25 - VQQj + 5 (2 - V5) VQ ~ 5 (2 + V5) VQi}, 
V5, 
= 80 {- 25 - 47 V5 +(5 (2 - V5) - 5) VQ}, 
that is, 
A'B'+I3'Y= 4V5{-25-47 V5 + 5 (1-V5)VQ} 
V5, 
= - 20(47 + 5V5) + 20V5(l-V5) VQ, = H"; 
Vo, 
and similarly we verify the values of 5", C" and D". 
V5, 
We have next 
A'A" = 160 V5 {(10 + 5 V5 + VQ) (18 + 13 V5 + V5 VQ)}, 
V5. 
or observing that Q V5 is = 235(2 + V5), the whole term in { } is 
; but it is to be 
= (505 + 220 V5) + (470 + 235 V5) + (18 +13 V5 + 25 + 10 V5) VQ, 
= 975 + 455 V5 + (43 + 23V5)VQ =: 65V5(7 + 3V5) + (43 + 23 V5) VQ j 
5(2 + V5), &e., 
or we have 
5 (2 +Vo), &c., 
A'A" = 160 V5 {65 V5 (7 + 3 V5) + (43 + 23 V5) VQ}, 
= 160 V5 (1 + V5) {65 V5 (2 + V5) + (18 + 5 V5) VQ}, 
5(2 + V5), &c., 
and consequently 
A'A" -f- ^Sy = 40(1 + V5) {65 V5(2 + V5) + (18 + 5 V5) VQ}, = -4 ; 
and similarly we verify the values of 5, G, D. 
12—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.