Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

CONTENTS. 
IX 
911. On an algebraical identity relating to the six coordinates of 
a line ........... 76 
Messenger of Mathematics, t. xx (1891), pp. 138—140 
912. On the notion of a plane curve of a given order . . . 79 
Messenger of Mathematics, t. xx (1891), pp. 148—150 
918. On the epitrochoid ......... 81 
Messenger of Mathematics, t. xx (1891), pp. 150—158 
914. On a soluble quintic equation ....... 88 
American Journal of Mathematics, t. xm (1891), pp. 53 58 
915. On the partitions of a polygon . . . . . . 93 
Proc. Lond. Math. Soc., t. xxii (1891), pp. 237—262 
916. [Note on a theorem in matrices] . . . . . . 114 
Proc. Lond. Math. Soc., t. xxii (1891), p. 458 
917. [Note on the theory of rationed transformation] . . . 115 
Proc. Lond. Math. Soc., t. xxii (1891), pp. 475, 476 
918. On the substitution-groups for two, three, four, five, six, 
seven, and eight letters. . . . . . . . 117 
Quart. Math. Journ., t. xxv (1891), pp. 71—88, 137—155 
919. On the problem of tactions . . . . . . 150 
Quart. Math. Journ., t. xxv (1891), pp. 104—127 
920. On ortliomorpliosis . . . . . . . 170 
Quart. Math. Journ., t. xxv (1891), pp. 203—226 
921. On some problems of ortliomorpliosis . . . . . 191 
Crelle’s Journal der Mathem., t. cvn (1891), pp. 262 277 
922. Note on the lunar theory ........ ¿06 
Monthly Notices of the Royal Astronomical Society, t. lii (1892), 
pp. 2—5 
923. Note on a hyperdeterminant identity . . . . . 210 
Messenger of Mathematics, t. xxi (1892), pp. 131, 132 
924. On the non-existence of a specicd group of points . . . 212 
Messenger of Mathematics, t. xxi (1892), pp. 132, 133 
c. xm. 2,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.