ES&3RSB55S8HRE
925]
213
925.
ON WAKING’S FORMULA FOR THE SUM OF THE mth POWERS
OF THE ROOTS OF AN EQUATION.
[From the Messenger of Mathematics, vol. xxi. (1892), pp. 133—137.]
The formula in question, Prob. I. of Waring’s Meditationes Algebraicce, Cambridge,
1782, making therein a slight change of notation, is as follows: viz. the equation being
then we have
x n + bx n ~ l + cx n ~- + dx n ~ s + ... = 0,
— me b m ~ 2
+ md b m ~ 3
— me')
+ m.h'
— m.m — Q. cf
— m . m — 6 . de
>b r
h m- 4
+ \m .m—S.c 2 j
+ mf)
yb m ~ 5
— m . m — 4 . cd )
— m.g
+ m ,m — 5 . ce
+ \ m. m — 5. d?
— \m. m — 4. m — 5 . c 8 ,
yb m ~ 6
+ \m. m — 5 . m — 6 . c 2 d j
+ m .i
+ m .m — 7 . eg
+ m .m - 7 . df
+ \m . m — 7 . e 2
— \m. m — 6. m — 7 . ere
— | m. m — 6 . m — 7 . cd 2
+ f^m . m —5.m—Q.m —7. c 4 ,
+ &c.,
-
where, reckoning the weights of b, c, d, e, ... as 1, 2, 3, 4, ..., respectively, the several
terms are all the terms of the weight m, or (what is the same thing) in the