931]
ON THE APPLICATION OF SURFACES TO EACH OTHER.
257
and similarly the other two parts are
(- Ca + Ay) 2 and (- A/3 + Bg) 2 ;
the equation is thus verified.
wj • i •? dni/ dn dm , dn
VV e require Godazzi s ^ and , or say ^ and ^; these are to be obtained
from the equations
d_ jx _ Ea. — aw dm d by — c/3 _ Eg — aw dn
dp \/E VEA dp’ dp \/A VEA dp’
and the values obtained should satisfy
d Eg — aw_ a dm by — cfi dn
I find
dp V EA \/E dp aJA dp '
a , b , c
dm _*J A dn _ aJE
dp É ’ dp A
a , ¡3 , y
a i> fti> 7i
where a 1} /3 1; y l are the derivatives of g, ¡3, y in regard to p; and the equation
to be verified thus is
a , b, c
d Eg — aw _ a*/A (by — cA)rJE
dp \ f EA E aJE A aJA
« , /3 , y
a i > fii, 7x
dm
First, for : the derivatives of a, E are a and 2 (aa + b/3 + cy), = 2« ; we thus
have
Avhich is
viz. we have
d a
cico Eg — am
dp \JE ’ \/E E \/E E ~aJE ’
_ Ea — aw dm
V EA dp
dm _ aJA
dp E
dn
Next, for using a subscript Q to denote derivation in regard to p, we have
A = EX — co 2 , and thence
= EiX -f- EXi — 2wwj
= 2wX + E. 2 (gg 1 + ¡3(3-l + yy x ) — 2w (X + aaj + bfr + cy x ),
= 2 [E (gg 1 + /3& + yy^ — w (aa x + bfi x + 071)},
= 2 (ajX + /3 2 F + 7jZ),
c. XIII.
33