262
ON THE APPLICATION OF SURFACES TO EACH OTHER.
[931
where I recall that the values of w, w, w, X, and p" are aa + b0 + cy, a'a + b /3 + c y,
aa' + 6/3' + cy', a 2 4- /3 2 4- y 2 , and aa' 4- /3/3' 4- yy', respectively. Observe that the first term
in this expression for is
We thus have
dn
dp ’
dm 7 E'ux — Fa>
u = cos L — —
dp VE
dm . , E'
V ~dp Sml ~VWE’
dn dl _ 2 \JE
W dp dp \/A
a , b, c
a , ß , y
ai, ft, yi
+ (/¿'E - \F) - ^ (m'E - aF) \ ,
a, b, c
CL, 0, y
a, 0', y
and we thence obtain at once the values of U, V, W; viz. these are
Tr dM T Gen" - F*r"
U = dq C0SL = VO ’
Tr dM . T G'
T " dq SmL V^/G’
_dN dL 2 xJG
dq dq
+
Y 2 A'
(
a' , b' ,
c'
)
Uco'V - v"F)
4, 0",
y"
+ O’ VG (jiG - \"F)--F- (v’G - w"F)\
{
0",
n
7-2
. )
where a 2 ", ¡3", y" denote the derived functions of a", /3", y" in regard to q, viz.
these are the third derived functions of x, y, z in regard to q.
We have, moreover,
dx 2 + dy 2 4- dz- = E dp 2 4- 2F dpdq + G dq 2 , = r 2 di? 4- 2rR cos 6 dtdT + R 2 dT 2 ;
that is,
r = ^E, R = \JG, cos 6 —
F
VEG’
and therefore also
sin 6
4EG - F 2
4EG
V
VEG‘