NOTE ON THE H YDRODYN AMICAL EQUATIONS.
7
890
where the terms containing second derived functions disappear of themselves, and the
expression on the right-hand is thus
du dv dv dv dw dv
dz dx dz dy dz dz
du dw dv dw dw dw
dy dx dy dy dy dz '
Representing for shortness the Matrix
du du du
dx ’ dy ’ dz
dv dv dv
dx dy ’ dz
dw dw dw
dx ’ dy ’ dz
by
a , b , c
a', b', d
and its square by
A , B , G
A', B', C
we have
a", b", c"
A",
B",
G"
ldu dv
dw\
/du
dv
dw\
/du
dv
dw\
\dx ’ dx ’
<to)’
\dy ’
dy’
W’
\dz ’
dz ’
dz)
A , B ,
C
du
du
du
A', B',
C'
dx ’
dy’
dz
>1 >>
A", B",
G"
dv
dv
dv
dx’
dy’
dz
dvj
dw
dw
dx ’
dy’
dz
” ” ”
viz. the combinations which enter into the foregoing formula are
and
Q, dv du dv dv dv dw
dx dz dy dz dz dz ’
_ dw du dw dv dw dw
dx dy dy dy dz dy
and the equation thus is D (c — b") + C' — B" = 0 ; viz. the three equations are
D (c - b") + C' - B" = 0,
D(a"-c ) + A" — C =0,
D (b — a) + B — A' = 0,
which are the equations in question.
Observe that we have
C' — B" = (a', b', c")(c, c\ c") — (a", b", c")(b, b', b")
= a'c' + b'c + c'c" - a"b - b'b" - b"c",
and thence, writing
we have
p — a(c' — b") + b (a" — c) + c (6 — a'),
— ad — ab" + a"b — a'c,
C'-B" + p = (a+b'+ c") (c - b") = 0,