932] ON SYMMETRIC FUNCTIONS AND SEMIN VARIANTS. 305
cannot appear, we must have terms of this form destroying each other. The simplest
mode of effecting the development is to write
( a ~ /3) 8 (a _ 7) (/? — 7) = (a — /3) 8 {a/3 — 7 (a + /3) + 7 2 }:
we may herein put at once 7 = b, 7 s = c, and thus the form is
(a-/3) 8 {a/3-&(a+/3) + c};
I develop thus:
(a-/3) 8 1, — 8, + 28, - 56, + 70, - 56, + 28, - 8, +1,
+ 1, - 8, +28, - 56, + 70, -56, +28, -8, +1
(a - /3) 8 (a + ¡3) 1, -7, +20, -28, +14, +14, -28, +20, -7, +1
1 bj — 8 ci + 28 dli — 5Qeg + 70/ 2
+ 1 - 8 +28 - 56
— b f lj — *7bi + 20ch — 28dq + 14eA
U 1 - 7 +20 - 28 +14 )
+ c / li — 8bh + 28c$ — 56df + 70e 2 \
V+ 1 - 8 + 28 - 56 )
- - 14
k
h J
+ 2-2
0
ci
- 16 +2
- 14
+ 1
dli
+ 56
+ 56
- 4
eg
- 112
- 112
+ 8
P
+ 70
+ 70
- 5
b%
+ 14
+ 14
- 1
bch
- 40 - 16
- 56
+ 4
bdg
+ 56
+ 56
- 4
bef
- 28
- 28
+ 2
c 2 g
+ 56
+ 56
- 4
cdf
- 112
- 112
+ 8
ce 2
+ 70
+ 70
- 5
± 23,
which, in fact, exhibits the calculation of the sharp form ci go ce 1 . The disappearance
°f the term in bj will be noticed,
c. XIII.
39