364
ON SEMINVARI ANTS.
364 ON SEMIN V ARI ANTS. [942
show that df— b 2 d~ is not obtainable by mere derivation from the covariants of degree
3 of the quartic.
The quintic and its covariants up to the degree 3 are
¿=(
1
5b
10 c
10 d
5e
f
(1, b, c, d, e, f\x, yf;
e + 1
/ -1
bf+l
bd - 4
CO
1
ce — 4
c 2 + 3
cd + 2
cP + 3
y)\
(e -c 2 , f- cd, bf- d 2 7[x, yf;
C = (c - b 2 , d — bc, e — c 2 , f— cd, bf— cl 2 , cf— de, df— e 2 ]fx, yf,
D={ce- c 3 , cf— c 2 d, df— cd 2 , bdf — d 3 \x, y) 3 ,
E = (/— be 2 , bf — c 3 , cf— c 2 d, df — cd 2 , ef— d 3 , f 2 - d 2 e\x, yf,
F = (d — b 3 , e — b 2 c, f — be 2 , bf — c 3 , cf — c 2 d, df — cd 2 ,
ef— d 3 , f 2 — d 2 e, bf 2 — de 2 , cf 2 — e 3 fx, yf
Hence all the covariants of the degree 3 are A 3 , AB, AG, D, E, F, where
AB = (e —c 2 , f—bc 2 , bf—c 3 , cf—c 2 d, bcf-cd 2 , bdf—d 3 , bef - d 2 e, bf 2 — d 2 f\x, yf
AG = (c- b 2 , d - be, y) n ;
and the derivatives are
(A, A 3 f , (A, A 3 ) , &c. weights of leading coefficients are 0, 1, 2, 3, 4, 5
4, 5, 6, 7, 8, 9
2, 8, 4, 5, 6, 7
6, 7, 8, 9
5, 6, 7, 8, 9, 10
3, 4, 5, 6, 7, 8.