Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

476 ON THE SEXTIC RESOLVENT EQUATIONS OF JACOBI AND KRONECKER. [950 
Kronecker s resolvent equation. 
Kronecker writes x m to denote x 0 , x 1} x 2 , x 3 , x 4 according as the residue of 
m (mod. 5) is = 0, 1, 2, 3 or 4: then putting 
^m+n+ VS?m'^m+n^m+zn = ® . Wl + W • m + 2/2, 
a root is 
/= (012 +123 + 234 + 340 + 412) sin — 
D 
+ (024 + 130 + 241 + 302 + 413) sin 
+ (031 +142 + 203 + 314 + 420) sin 
+ (043 +104 + 210 + 321 + 432) sin 
47r 
5 
07T 
T 
87T 
5 
and the other roots are deduced from this by changing 01234 into 03412, 14023, 
20134, 31240, 42301 respectively. 
2?r 9rjj- 
Taking e an imaginary fifth root of unity, say e = cos —- + i sin —, so that 
o o 
. 27T . 477 . 677 . 877 A ... 
sm —, sin sin -g-, sin — are as e —e 4 , e 2 — e 3 , e 3 — e 2 , e 4 — e; also writing 
01234 = 012 + 123 + 234 + 340 + 412, ..., 
so that 01234, ..., are cyclic irreversible functions of the roots x, then the expression 
for the root f is 
/= ( e _e 4 ) 01234 + (e 2 -e 3 ) 02413 
- (e - e 4 ) 04321 - (e 2 - e 3 ) 03142, 
or, as this may be written, 
/= {(e - e 4 ) (1 - £) + (e 2 - e 3 ) (1 - R) >8} 01234, 
and the expressions for the six roots are 
/ = {(e - e 4 ) (1 - R) + (e 2 - e 3 ) (1 - R) 8} 01234, 
/0 = {(e - e 4 ) (1 - R) + (e 2 - e 3 ) (1 - R) S] 03412, 
/1 = {(« “ 6 ') (1 ~ R) + (e 2 - e 3 ) (1 - R) iSf} 14023, 
/2 = {(e - e 4 ) (1 -R) + (e 2 - e 3 ) (1 - R) S j 20134, 
/3 = {(e - e 4 ) (1 - R) + (e 2 - e 3 ) (1 - R) S} 31240, 
/4 = {(e - e 4 ) (1 - R) + (e 2 - e 3 ) (1 - R) 42301. 
I write down the analogous functions 
F = {(e - e 4 ) (1 - R) + (e 2 - e 3 ) (1 - R) S} 03142, (= ib801234), 
F 0 = {(e - e 4 ) (1 - R) + (e 2 - e 3 ) (1 - R) 01324, (= ££03412), 
F 1 = {(e - e 4 ) (1 - R) + (e 2 - e 3 ) (1 - R) £} 12430, (= ££14023), 
F2 = {(e - e 4 ) (1 - £) + (e 2 - e 3 ) (1 - £) £} 23041, (= ££20134), 
£ 3 = j(e - e 4 ) (1 - £) + (e 2 - e 3 ) (1 - £) £} 34102, (= ££31240), 
Fi = {(e - e 4 ) (!-£) + (e 2 - e 3 ) (1 - £) £} 40213, (= ££42301).
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.