Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

522 
[955 
955. 
THE NUMEKICAL VALUE OF Tli, = r(l+i). 
[From the Messenger of Mathematics, vol. xxm. (1894), pp. 36—38.] 
I DO not know whether the numerical value of Hx for an imaginary value of 
has ever been calculated; and I wish to calculate it for a simple case x = i. 
We have 
Hz 
= 1 + 
1 + |) 
l + g)*“* 
- Z\ *hl* 
1 + ;)‘ 
wherelhl denotes the hyperbolic logarithm. 
1 i 
+ I 
Hence, in particular, when z — i, we have 
1 + i . cos hi \ + i sin hi £. 
¿i 
1 + ^. cos hi §■ + i sin hi §. 
1 + ^ . cos hi f + i sin hi f. 
= \/(l + 1) . COS 0J + i sin 6 1 . COS 0! — i sin (j) 1 . 
V(1 + i) • C0S ^2 + i sin #2 ■ COS <f) 2 — i sin (f) 2 . 
a/(1 -f h) • cos $3 + i s i n $3 • cos 03 — sin 03-
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.