522
[955
955.
THE NUMEKICAL VALUE OF Tli, = r(l+i).
[From the Messenger of Mathematics, vol. xxm. (1894), pp. 36—38.]
I DO not know whether the numerical value of Hx for an imaginary value of
has ever been calculated; and I wish to calculate it for a simple case x = i.
We have
Hz
= 1 +
1 + |)
l + g)*“*
- Z\ *hl*
1 + ;)‘
wherelhl denotes the hyperbolic logarithm.
1 i
+ I
Hence, in particular, when z — i, we have
1 + i . cos hi \ + i sin hi £.
¿i
1 + ^. cos hi §■ + i sin hi §.
1 + ^ . cos hi f + i sin hi f.
= \/(l + 1) . COS 0J + i sin 6 1 . COS 0! — i sin (j) 1 .
V(1 + i) • C0S ^2 + i sin #2 ■ COS <f) 2 — i sin (f) 2 .
a/(1 -f h) • cos $3 + i s i n $3 • cos 03 — sin 03-