[961
961]
A TRIGONOMETRICAL IDENTITY.
539
or, say a, b, 2c are equal to these values; and then, substituting in the first equation,
we have
X (1 + y-Z 2 ) (x 2 — yz) + x (y 2 + z 2 ) (— 1 + x 2 yz) + (1 — ж 4 ) (y-z + yz 2 ) = 0,
which is
(x-y)(x—z){x + y + z- (yz + zx + xy) (x + у 4- z)} = 0,
viz. our relation between x, y, z is
x+ у + z — (yz + zx + xy) xyz = 0,
or, what is the same thing,
1 1 1 / V л
1 1 (yz + zx + xy) = 0.
yz zx xy w
Then
a + h = x (— 1 + x 2 ) (1 + yz),
a — b = x( l+x 2 )(l—yz),
2c = ( 1 —x 4 )(y + z),
a 2 — b 2 = x 2 (1 — ж 4 ) (y 2 z 2 — 1), 2he = x (— 1 + x 2 yz) (1 — ж 4 ) (у + z).
The equation to be verified is
x (ifz 2 - 1) = (1 - x 2 yz) (y + z),
that is,
x + y + z — (yz + zx + xy) xyz — 0,
as it should be.
A somewhat different form of the proof is as follows:—We have identically
cos (/3 + 7), cos (/3 - 7), 1
cos (7 + a), cos (7 — a), 1
cos (a + /3), cos (a — /3), 1
= 4 sin %(/3- 7) sin \ (7 - a) sin £ (a - /3) {sin (/3 + 7) + sin (7 + a) + sin (a + /3)},
and therefore the relation between the angles is
sin (/3 + 7) + sin (7 + a) + sin (a + /3) = 0.
From the second and third equations,
a : b : c = sin {|(/3 + 7) — a} : — sin (/3 + 7) + a] : 2 sin a cos a cos £ (/3 — 7),
or say
a = sin £ (¡3 + 7) cos a — cos | (/3 + 7) sin a,
b = — sin | (/3 + 7) cos a — cos £ (/3 + 7) sin a,
c = 2 sin a cos a cos ^ (/3 — 7),
therefore
a 2 — b 2 = — 4 sin a cos a sin (/3 + 7) cos (/3 + 7) = - 2 sin a cos a sin (/8 + 7),
be — 2 sin a cos a {- cos (/3 — 7) sin £ (/3 + 7) cos a — cos |(/3 — 7) cos £ 08 + 7) sin a},
= 2. sin a cos a {— (sin /3 + sin 7) cos a — (cos /3 + cos 7) sin a],
= sin a cos a {— sin (7 + a) — sin (a + /3)} = sin a cos a sin (/3 + 7),
68—2