Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

550 ON THE NINE-POINTS CIRCLE OE A SPHERICAL TRIANGLE. [964 
Thus p, q, r, p 1} q 1} denoting as above the cosines and sines of the half-sides 
of the triangle ABC, that is, the cosines and sines of the sides of the triangle 
A'B'C', we have 
tan B'F' = 
q — rp 
rp 1 
tan C'F' = 
r — pq 
№. ’ 
tan B'L' = , 
q + rp 
tan C'H = . 
r +pq 
First, for the points F', G', H', we have A'F', B'G', C'H', the perpendiculars from 
the angles on the opposite sides, meeting in a point O', the orthocentre of the 
triangle A'B'C': in fact, from the triangle A'B'F', right-angled at F', we have 
7-,/ fir 1 MTV TV . 1 cos 46 — COS 4c COS ia 
tan B'F = tan A B cos B = tan 4 c —.—= , 
smfcsmp 
_r x q — rp q — rp 
r r 1 p 1 rp 1 ’ 
as above, and similarly for the points G' and H'. 
I notice that we have 
sin B'F' = 
and thus 
sin B'F' = 
q — rp 
q — rp 
— rpf + r 2 pY} ’ + r 2 — !tpqr) ’ 
q-rp „.-p, _ r-pq 
\/(q 2 + r 2 — 2pqr) 
, sin C'F' = 
\J(q 2 + r 2 — 2pqr) ’ 
sin C'G' = 
r —pq 
\/(r 2 +p 2 — ¿pqr) ’ 
sin A'G' = 
p — qr 
\/(r 2 + p‘ J — 2pgr) ’ 
sin^ , FT / = - 77 — , , sin £'//' = - q - 2 rp 0 ; 
y \p +q — ¿pqr) y (p- + q 2 — ¿pqr) 
hence 
sin B'F'. sin tf'G'. sin A'H' = sin C'F'. sin ¿'G' . sin B'H', 
which (as is well known) is the condition for the intersection of the arcs A'F', B'G', C'H' 
in the orthocentre O'. 
But I say further that we have 
sin 2B'F' (= sin BF) = 
2 (q — rp) rp l 
q 2 + r 2 — 2pqr ’ 
and thence 
sin ¿C'F' (= sin OF) = 
2 (r — pg) gp : 
g 2 + r 2 — ¿pqr ’ 
sin BF. sin CG. sin AH = sin CF. sin AG. sin BH, 
and thus the arcs AF, BG, CH meet in a point which is obviously not the orthocentre 
of the triangle ABC.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.