550 ON THE NINE-POINTS CIRCLE OE A SPHERICAL TRIANGLE. [964
Thus p, q, r, p 1} q 1} denoting as above the cosines and sines of the half-sides
of the triangle ABC, that is, the cosines and sines of the sides of the triangle
A'B'C', we have
tan B'F' =
q — rp
rp 1
tan C'F' =
r — pq
№. ’
tan B'L' = ,
q + rp
tan C'H = .
r +pq
First, for the points F', G', H', we have A'F', B'G', C'H', the perpendiculars from
the angles on the opposite sides, meeting in a point O', the orthocentre of the
triangle A'B'C': in fact, from the triangle A'B'F', right-angled at F', we have
7-,/ fir 1 MTV TV . 1 cos 46 — COS 4c COS ia
tan B'F = tan A B cos B = tan 4 c —.—= ,
smfcsmp
_r x q — rp q — rp
r r 1 p 1 rp 1 ’
as above, and similarly for the points G' and H'.
I notice that we have
sin B'F' =
and thus
sin B'F' =
q — rp
q — rp
— rpf + r 2 pY} ’ + r 2 — !tpqr) ’
q-rp „.-p, _ r-pq
\/(q 2 + r 2 — 2pqr)
, sin C'F' =
\J(q 2 + r 2 — 2pqr) ’
sin C'G' =
r —pq
\/(r 2 +p 2 — ¿pqr) ’
sin A'G' =
p — qr
\/(r 2 + p‘ J — 2pgr) ’
sin^ , FT / = - 77 — , , sin £'//' = - q - 2 rp 0 ;
y \p +q — ¿pqr) y (p- + q 2 — ¿pqr)
hence
sin B'F'. sin tf'G'. sin A'H' = sin C'F'. sin ¿'G' . sin B'H',
which (as is well known) is the condition for the intersection of the arcs A'F', B'G', C'H'
in the orthocentre O'.
But I say further that we have
sin 2B'F' (= sin BF) =
2 (q — rp) rp l
q 2 + r 2 — 2pqr ’
and thence
sin ¿C'F' (= sin OF) =
2 (r — pg) gp :
g 2 + r 2 — ¿pqr ’
sin BF. sin CG. sin AH = sin CF. sin AG. sin BH,
and thus the arcs AF, BG, CH meet in a point which is obviously not the orthocentre
of the triangle ABC.