Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 13)

[908 
909] 
69 
3N. 
gh 
- 36 
g'h' 
- 36 
V 
- 36 
w' 2 
- 36 
h' 
+ 72 
yn 
+ 72 
2 h' 
- 36 
hh' 2 
- 36 
h 2 
- 36 
■h’ 2 
- 36 
k 3 
+ 72 
Ï 3 
+ 72 
l'h' 2 
-144 
I'hh' 
-144 
hh' 
-144 
lh 2 
-144 
g'h 
- 36 
g' 2 h' 
- 36 
+ 288 
-936 
gig’Z 
- 
1 
fg 2 g' 2 h' 
+ 
6 
fg 2 g' 2 h 
+ 
6 
fgg'h' 2 
+ 
24 
f 2 gg'h 2 
+ 
24 
ffgg’hh 
+ 
12 
f 3 h' 3 
- 
64 
f' 3 h 3 
- 
64 
f 2 g 2 h 2 
+ 
54 
f' 2 g' 2 h' 2 
+ 
54 
ff'hh! 2 
+ 
96 
ff' 2 h 2 h' 
+ 
96 
+ 372 
- 129 
±2866 
two invariants of 
909. 
ON A PARTICULAR CASE OF RUMMER’S DIFFERENTIAL 
EQUATION OF THE THIRD ORDER. 
[From the Messenger of Mathematics, vol. xx. (1891), pp. 75—79.] 
The general form of equation in question is 
x 
x 
_ 3 
2 
x 
x j 
+ x' 2 
A B G 
(x — l) 2 x (x — 1) X” 
' A' B' C'\ 
(<-i) 5+ <(i-i) + ?j 
= o, 
here x is a function of t; and A, B, G, A', B', C' are numerical constants. For 
various given values of A, B, C, and values determined thereby of A', B', G', the 
equation admits of a solution in the form x = rational function of t\ the theory in 
reference to the cases considered by Schwarz is considered in my paper “ On the 
Schwarzian Derivative and the Polyhedral Functions,” Camb. Phil. Trans., t. xiii. (1883), 
pp. 5—68, [744]. But the theory is considered in a more general and exhaustive 
manner in Goursat’s memoir, “Recherches sur l’equation de Kummer,” Acta Soc. Sci. 
Fennicce, t. xv. (1888), pp. 47—127. I consider here one of the solutions given by 
him, viz. writing 
P = 4i - 5 , X= №, 
Q = 5t - 4 , Y = Q s , 
R = 8t*-llt + 8, Z=-(t-l) 2 R 2 , 
so that, identically, X + F+ Z = 0; then the solution is expressed by either of the 
equivalent equations 
X t 2 P s 
x ~~Z~ (t - l) 2 P 2 ’ 
, F_ (f _ 
x v ~ Z (t-lfR 2 ‘
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.