[908
909]
69
3N.
gh
- 36
g'h'
- 36
V
- 36
w' 2
- 36
h'
+ 72
yn
+ 72
2 h'
- 36
hh' 2
- 36
h 2
- 36
■h’ 2
- 36
k 3
+ 72
Ï 3
+ 72
l'h' 2
-144
I'hh'
-144
hh'
-144
lh 2
-144
g'h
- 36
g' 2 h'
- 36
+ 288
-936
gig’Z
-
1
fg 2 g' 2 h'
+
6
fg 2 g' 2 h
+
6
fgg'h' 2
+
24
f 2 gg'h 2
+
24
ffgg’hh
+
12
f 3 h' 3
-
64
f' 3 h 3
-
64
f 2 g 2 h 2
+
54
f' 2 g' 2 h' 2
+
54
ff'hh! 2
+
96
ff' 2 h 2 h'
+
96
+ 372
- 129
±2866
two invariants of
909.
ON A PARTICULAR CASE OF RUMMER’S DIFFERENTIAL
EQUATION OF THE THIRD ORDER.
[From the Messenger of Mathematics, vol. xx. (1891), pp. 75—79.]
The general form of equation in question is
x
x
_ 3
2
x
x j
+ x' 2
A B G
(x — l) 2 x (x — 1) X”
' A' B' C'\
(<-i) 5+ <(i-i) + ?j
= o,
here x is a function of t; and A, B, G, A', B', C' are numerical constants. For
various given values of A, B, C, and values determined thereby of A', B', G', the
equation admits of a solution in the form x = rational function of t\ the theory in
reference to the cases considered by Schwarz is considered in my paper “ On the
Schwarzian Derivative and the Polyhedral Functions,” Camb. Phil. Trans., t. xiii. (1883),
pp. 5—68, [744]. But the theory is considered in a more general and exhaustive
manner in Goursat’s memoir, “Recherches sur l’equation de Kummer,” Acta Soc. Sci.
Fennicce, t. xv. (1888), pp. 47—127. I consider here one of the solutions given by
him, viz. writing
P = 4i - 5 , X= №,
Q = 5t - 4 , Y = Q s ,
R = 8t*-llt + 8, Z=-(t-l) 2 R 2 ,
so that, identically, X + F+ Z = 0; then the solution is expressed by either of the
equivalent equations
X t 2 P s
x ~~Z~ (t - l) 2 P 2 ’
, F_ (f _
x v ~ Z (t-lfR 2 ‘