Full text: Zur Reduction elliptischer Integrale in reeller Form ([Hauptwerk])

Zur Ueduction elliptischer Integrale. 
limw(i—q u ) — 2 lg — 
n = oo f ! 
lim (i —q) lg* (q) = lim (i - q) lgX,(g) = - 
q= 
lim (i-q) lgXt(q) = Iim i 1 - q) xM = ^ 7V ' 
. i , q*)!__ 1 17t 
lim — lg 
n # [q* 
I cos 2u — — cos xu — cos 6u — etc. i 
la — ' 6 4 9 I 
5 <7 
Die Cosinusreihe stellt in dem Intervalle den Werth u[n — u) 
dar, so dass 
I , M U 1 9”) .. I , u[7t-u) 
lim — lg ,— = lim — lg j— = 
n ' &(q Vl ) 11 ‘ $[{q n ) lg 
i . ^(m, 9”) i . ^iK f) 
lim — lg— ,— = lim — lg ,— = 
" ' #,(?*) ” " »,(?*) 'S? 
ferner 
i , ?") i , & 3 {u,q 
lim — lg —-— = lim — lg 
” ‘ »,(?“) " ' »,(i 
Letzteier Werth entsteht aus der Leihe 
— cos 2 u h cos 4 u cos 6 u :t etc. 
4 9 
und gilt desshalb in dem Intervalle —— <u< 
° 2 — = 2 
Durch Differentiation nach m endlich erhalt man 
lim 
i 
&’{u, q n ) 
»;(u. r: 
n 
¿>{u, q*) 
” n 
i\{u, <f 
i 
Vii", q*) 
i 
q* 
lim 
= hm — 
n 
?“) 
n 
-GK q h 
Differentiirt man die Gleichungen 
uu
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.