Full text: Zur Reduction elliptischer Integrale in reeller Form ([Hauptwerk])

80 
W. ScHEIBNER. 
24 
auch der äquivalenten Gleichung £ 0 JT 4- t /o / = o , mithin den 
Functionen 3 und T zukommen. In der That lassen sich dieselben 
auf die Form bringen: 
3 = *V (y 0 - x 0 )\i 0 yl (3.a-„ 4- t/ 0 ) 4- 6 q t/ 0 (x„ 4- t/ 0 ) 4 3 4 (*« + 3!/o) + 4 4] 
4 2xy[x+y) (t/ 0 - x 0 ) [- / 0 .r„t/{| + 3*1^0 K 4 ,Vo) + 2 4(*o + 3?/o) +3bl 
+ (* 2 + //*) [4*SyS + 6/ r x^ü 4- 34*0^ (3* 0 + - Uo) + 
4 4 4 //o(*« ■+■ 3 *o Vo •+■ 2/2) •+• 3 4 .Vo C 2 «o ■+• 3 //u) ■+■ 6 4 y 0 
~ 2 xy[i 0 xlyl 4- 6 q x 0 y* 4- 3 V:</o (4*0 + !h) + 4< 3 y 0 (*0 + 3*o*/o 4 2/o) + 
4- 3 4 *0 (*o 4 4!/o) 4" h 4*0 4- 41 
- 2 (* 4- y) (y 0 - *o) [3 4*o*/o 4- 2 42/2 (3 *0 4- t/ 0 ) 4- 3 4*/o (*o 4- // 0 ) - 41 
— (y 0 — *o) [44 *o//o 4- 3 4 //o (3 *0 4- //o) 4- 6 / B «/ 0 (x 0 4 ?/ 0 ) 4- /„ (x 0 4- 3 //o) I 
r = x 2 t/ 2 (t/o - *o) 14*0 (*o 4“ 3 ¿/o) 4- 6 4 x 0 (x 0 4- t/ 0 ) 4- 3 *, (3 x 0 4- y 0 ) 4- 4 4] 
4- 2 xy[x 4- y) (t/o ~ * 0 ) L 4 *gt/o 4- 3 4*0 (*o 4- t/ 0 ) 4- 2 4 (3 X 0 4- ij 0 ) 4- 3 4] 
“ (* 2 4- //") [4 *0 .Vo 4- 6 4 *0 ?/o 4- 3 4 *0 //0 ( 2 *0 4- 3 y 0 ) 4- 
4“ 4 4 *0 (*o 4- 3*0//0 4- 2/2) 4-34*0(3*0 4“ 2 2/ 0 ) 4“ 6t 5 X ft 4- 4] 
4- 2 xy 14 X* yl 4- 6 q X* y„ 4- 3 4*0 (*o 4- 4¿/0) 4" 4 4*0 (*o 4- 3 *0 ¿/0 4- !/l) 4- 
4~ 3 b¿/o(4*o 4- t/ 0 ) 4- 6 42/o 4* 'el 
— 2 (* 4- ,y) (t/ 0 - X 0 ) [3 4*0^0 4- 2 4*o (*o 4- 32/o) 4- 3 4*o(*o 4- //„) - ? 6 ] 
- (1/0 “ *0) [4 4 *0 ¿/0 4- 3 4 *0 (*o 4- 3 ¿/0) 4- 6 4 x 0 (x 0 4- t/o) 4- 4; 3 * 0 4- t/ 0 ) | 
Hierbei sind <q = b, <q = e, & 2 = tq geworden und 
f (x t/) = ft£C 2 !/ 4 4- lbxy (x 4- t/j 4- C (x* 4- t/" 2 ) 4- 46, xy 4- 2 C, (a 1 4- ,?/) 4- C 4 
= ax 1 )/ 1 4- 2 bxy (x 4- //) 4- C (.X — t/) “ 4- 2 (26, 4- c) Xi/ 4- 2 (x 4- >/) 4- C, 
wo man schreiben kann 
K c = £ 0 [h 0 4- (x 0 - y 0 )y 0 (i 0 y 3 0 (x 0 4- t/ 0 ) 4- 6q (x 0 4- t/ 0 ) t/ 2 4- 
4- 32/o (3*0' 5 2/o 4 4 ? 3(*o ■+■ 42/o) 4- 6q)| 
- *]o Ibo - (*o “ //0) *0 ('0*0 (*o 4 !Jo) 4 6/, xl (X 0 4- // 0 ) 4- 
4 3*** 0 (5*o + 3 Uo) 4 4/3(4*0 +■ ¿/0) 4 6t 4 )| 
/>o\ 2 b[ 4c) — 3 l*o ¿/0 l^o( 2 h *0¿/0 4 t/o 3 *■* 0 4 //0 qt* 0 4 3y 0 ) 2 ^5) 4 
4- r Jo (2i i xly 0 4- 12*0 (* 0 4 32/o) b(3*o 4 t/ 0 ) “ 2 4)1 
während die Werthe der übrigen Coefficienten abc.. ohne Muhe 
aus den vorstehenden Ausdrücken für 3 und r abgelesen werden 
können.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.