Full text: Zur Reduction elliptischer Integrale in reeller Form ([Hauptwerk])

Zur Reduction elliptischer Integrale. 
105 
4 9' 
J = - 2®f ü y + 2{g ü -\lf ü )y* - ®f 0 \x - x 0 ) y 4- 23> 2 (x - xj 1 
+ % - V.') (* - *„! y* + $ ( 4 x - \/•„")(® - *„)*</ 
wo die beiden letzten Glieder auch in der Form geschrieben werden 
können 
-h 2 3) (2A — Lj (x - x 0 ) 2 y 4- 2 (A? -A4 4- A 2 - ~ G) (x - x 0 ) 2 ?/ 2 
während 
* = t* + ~ C<;-TI 5 , « = -f x± iTT-II 5 
Dagegen ergeben die Ausdrücke des Art. 11 für die nämliche Function 
2Ö (m) = 92 , S, (yy 0 ) = 9?, 
= 2 (Ij X 2 -+- 2 J7, u x -+- xV,") lf — 2 (I u x 2 4~ 2 d/ 0 x 4- N 0 j y [ly 4- 3)) 
4- 2 (X — X 0 ) 2 [(A 2 4- y G)/ 4- 2®Ai/ 4- £>*] - y G (X - X 0 ) V 
Endlich erhält man mittelst des Art. io 
X — x„ 
y = £> — 
4 (i; - A L 0 4- A 2 - T V Gj r/ 2 4- 2) [(2 A - I 0 ) y 4- 3)] 
(£«_ - m y l - ®hy 
w ~ 9a) ?/-+•® (/;>-+- 2 io'*?) 
L 0 X 2 4- 2 M Q X 4- A 0 — 2 A (x - x 0 ) 2 - £ 0 £ 
—(2A — G) (x—x 0 ) 4- 2 (I“x 4- 2it/j°X4- xV, ) — 2A(L 0 X 2 4-2.1/ u X4-A r 0 ) 
2 *3) (x — X„ 
3) 
¿0 x 2 4- 2 J/ u X 4- A T 0 — 2 A (x — X 0 i * 4- in £ -V — A 
£ = 83>y 
0 “ r "SoS 
2 £M-9a)'y(Py 2 -*- 6Ay 4- 3 3), / 0 [ 3 (A 2 - T y G:■ y 2 - £ 2 ] - /? 0 y y 
{i Vo ~ 9a ir + ® (/o2/ ■+■ 2 So G l 
*? = 4 3) (x -x 0 
[L 0 xx (l 4-M 0 (x4-x 0 )4-iVJ£4- [Lxx ü 4-M(x4-x 0 )4-A r ]£ 0 
{4 4- 2 M u x 4- xV 0 - 2 A (x - x 0 ) 2 4- £ 0 1} 2 
2G. 
Als viertes Beispiel setzen wir 
?l = (3 = o , 33 = 1 
wodurch 
Abhandl. d. K. S. Gesellseh. d. Wissenseil. XX. 
8
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.