Full text: Zur Reduction elliptischer Integrale in reeller Form (Supplement)

‘ J ^2 a'- = fsinwjg 
K Xi »> VT 
&*&iTr7. = — ] I + 4 cos m JS - 
xT^LC COS ¿( l. j 
COS 14 
a, «y. _ (>OSM 'V 9 W ■ (* + ( l ln ~ 1 
Xi , VT (-I)V (!+?**) 1 
COS Ml ^ H- 2r/ 2n C0S2M + i/ ln ^ 
COSM 
., a #,« -v T (- I) *-•«"'* (l - V ä ”~ 1 
^ 7/ I — 2f/ i n 1 COS 2 U 4- CJ* >l 2 
N7 r / W_i / \ 
= 4 S, —— — COS ( 2 n — I) u — 
14-q 
Zur Vervollständigung dienen die Ausdrücke 
(— i) n q ln ~ 1 [cos2U + q* n ~ u 
I 4- 2(f n ~ 1 COS2U 4- q in ~* 
&&*ärz = 1 +4 > 
au ^ 
^ #tl 
i 4- q 
-i) n - l q m - l (cos 2 u-q 2n -" 
i — 2q* n ~ x cos2« 4- q in ~' i 
q n 2 A 
JJCOS2 nU = -J<p 
*) Jacobi gibt in den Fundam. S. 87 dein letzteren Ausdruck die Form 
n, / T ■,» j»— x t T , in — l\ 
« &, ^ = «/ + 8 sin*u V - i“ß-1 ii±L 
O» im (l-q‘ n -')(l-2q tn -'cos2u + q' n -‘‘
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.