290 2. Abth. Geometrie. Geometrie der Ebene. §. 265.
die Anzahl, unter s die Länge der Seiten verstanden.
6. Den Flächeninhalt eines Kreises K findet man durch Mul
tiplication seines Umfangs mit der Hälfte seines Radius.
Denn denkt man um den gegebenen Kreis reguläre Polygone von
so vielen und so kleinen Seiten beschrieben, daß der Umfang bei
der Linien bis auf einen beliebig unbedeutenden Unterschied zu
sammenstimmt (f. §. 259, 4.), so darf man den vorigen Sah
auch auf den eingeschloffenen Kreis als die Gränze aller zu um
schreibenden Polygone übertragen.
Zusatz. Da der Umfang I* eines Kreises, dessen Radius mit
r bezeichnet wird, (nach §. 259, 4.) — 2rn ist, so findet man
K = 2rrc . ’ r = r 2 . it, d. h. gleich dem Produkte aus dem Qua
drate des Radius und der Verhältnißzahl rr.
7. Den Flächeninhalt eines Kreissectors (Kreisausschnitts) k
findet man durch Multiplication seines Bogens p mit der Hälfte des
Radius.
Denn da (nach §. 263, L. 8.) k : K = p : P und (L- 6.) K
— 1* . 4 r, so muß auch k — p . 4 r sein.
Zusa tz. Um ein Segment des Kreises (einen Kreisabschnitt)
zu bestimmen, hat man nur das gleichschenklige Dreieck, dessen Basis
die Sehne ist, von der Sectorfläche abzuziehen.
§. 265. Aufgaben.
1. Ein gegebenes Parallelogramm in ein anderes von doppelter
Höhe zu verwandeln, welches einen geg. Winkel cp enthalte.
2. Ein Dreieck in ein anderes von gleicher Grundlinie und dem
geg. Gegenwinkel cp zu verwandeln.
3. Ein beliebiges Polygon ABCDEF in ein inhaltsgleiches Drei
eck zu verwandeln. Fig. 77.
4. Ein Dreieck ALF in ein Rechteck zu verwandeln. Fig. 78.
5. Ein Rechteck in ein Quadrat zu verwandeln. Fig. 72 oder 57.
6. Auf einer gegebenen Geraden LN ein Parallelogramm zu con-
struiren, das einem andern EBFM gleich sei und die nämlichen
Winkel enthalte. Fig. 70.
7. Ein Quadrat zu consiruiren, das der Summe zwei gegebener
Qliadrate gleich sei.
8. Desgl. ein solches, welches ihrem Unterschiede gleich sei.
9. Zu zwei gegebenen ähnlichen Vielecken ABC DE und abcde
ein drittes ähnliches Vieleck zu finden, das der Summe jener
gleich sei. Fig. 48.
10. Eben so, daß es dem Unterschiede derselben gleich sei.
11. Ein Quadrat zu consiruiren, das zu einein gegebenen sich ver-
halte, wie eine Linie AB : BC. Fig. 79.
12. Ein Dreieck zu construiren aus der Grundlinie c, dem Gegen
winkel Y und dem Flächeninhalt — m 2 .