Full text: Anfangs-Gründe der Analysis endlicher Größen zum Gebrauch der Königl. Preußischen Artillerie

Von den einfachen aritm. Aufgaben. 167 
tot einerley ist, so würde man doch ohne Noch in 
weitläufige Rechnungen verfallen, wenn man sich 
lieber des ersten bedienen wölke. Man muß über 
haupt alle gar zu verwickelte Ausdrücke der Größen 
zu vermeiden suchen, und dahero, wann es angehen 
will, jede Größe am Ende der Ausgabe so einfach 
als möglich auszudrücken suchen. 
§. 268. 
Der Werth von x in der ersten Auflösung kann 
ebenfalS so verwandelt werden, daß er dem Ausdruck 
vor die Größe y ähnlich wird. Denn wenn man in 
x = m(apn -f- ianq -f- amq')— am — a 
n (mq — np) ' n 
die Brüche auf einerley Nenner bringt und wirklich 
multiplicirt, so wird 
k zzz {amr.p ~f~ zamnq ■+■ am 2 ff —am z q~*~amnp — atmiq~*~amnp) 
n ( mq — np) 
Last man nun die Glieder weg, welche einander auf 
heben und addirt diejenigen, welche sich addiren lassen, 
so wird alsdenn 
x — 2 amnp -f- amnq -f- an z p 
n(mq — np) 
Dieses last sich aber durch n dividiren und eS ist 
x = anp -f- 2a7imp-|— amq 
mq — np 
oder x — aX m{p-\-q)-\-p(m-\-ri) 
mq — np 
Diese Beyspiele zeigen zu gleicher Zeit wie man ohn- 
gefehr verfahren muß, eine Größe einfacher auszu 
drücken. Allgemeine Regeln lassen sich nicht viel hier- 
über
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.