Von den Funktzionen und ihrerVerw. 569
L rc. vorkommen, die übrigens mit einander, und
mit andern bekannten und gegebenen Größen, als
Zahlen, Linien, Bogen, Winke! rc. auf eine algebrai
sche Art verbunden seyn können. Wenn man anzeigen
will, daß LI eine Funkhion von gewissen Größen
ist, so muß man vorher sich über das Zeichen er
klären, wodurch man dieses andeuten will. Gesetzt
also, man'wählte das Zeichen P, um das Wort
Fnnktzion auszudrücken, so bedeutet U = (ß (x)
nicht daß U, der Größe <p multiplicirt durch x,
gleich ist, sondern, eS bedeutet, daß U eine Funk-
tzion von der veränderlichen Größe x ist. Diejenii
ge Größen, davon U eine Funktzion seyn soll, pflegt
man gern ßn ( ) einzuschließen, und die Deutlich
keit erfordert auch diese Vorsicht.
§. 762.
Wenn also, nach dieser Bedeutung deS Buch
staben (ß, der Ausdruck vorkomt, U = <P(xy)> so
bedeutet dieses nicht etwa blos eine Gleichung, son»
dern unzählige Gleichungen, und diese müssen so
beschaffen seyn, daß in jedem Gliede, in dem diese
unbekannte und veränderliche Größen vorkommen
können, beständig xy und die Dignitäten dieses Pro-
duckts, nicht aber blos x oder y allein, oder verschie
dene Dignitäten von x und y vorkommen. Um die
ses noch deutlicher zu machen, setze man xy — z,
so werden in allen den Gleichungen, darin man sich
nur z auf eine gewisse Art mit andern bekannten
Größen verbunden vorstellen kann, entweder 2 allein,
oder auch die Dignitäten von 2 vorkommen. Wenn
dahe-