TABLE 14. Example of the Non-Adiabatic Computations for Pi, pi, Pi
Or
Lindenburg, Germany, April 27, 1909
116
21.4
T, To
lr.fr (T. TA
Pa - To
log W rrr rrr
1 1 1 0
n k
k -1
294.4
2.46894
Ino- ” * floe- P, loe Po)....
log P '
p
4.99775
99482
9.87286
0.7462
B c — Bo
log n
k - 1
500
1000
1500
2000
2500
3000
4000
5000
384
500
500
500
500
500
1000
1000
17.1
13.5
10.3
8.0
5.7
2.7
-3.9
-10.1
-4.3
-3.6
-3.2
-2.3
-2.3
-3.0
-6.6
-6.2
fl RQWfi
-0.99429
U.Oi OUii
-0.63347
-0.55630
-0.50515
-0.36173
-0.36173
-0.47712
-0.81954
-0.79239
9.94515
0.13696
0.18811
0.33153
0.33153
0.21614
0.17475
0.20190
0.88136
1.3707
1.5421
2.1455
2.1455
1.6449
1.4954
1.5919
0.48442
0.67623
0.72738
0.87080
0.87080
0.75541
0.71402
0.74117
290.1
286.5
283.3
281.0
278.7
275.7
269.1
262.9
2.46255
2.45712
2.45225
2.44871
2.44514
2.44044
2.42991
2.41979
-.00639
-.00543
-.00487
-.00354
-.00357
-.00470
-0.1053
-.01012
-7.80550
-7.73480
-7.68753
-7.54900
-7.55267
-7.67210
-8.02243
-8.00518
-8.28992
-8.41103
-8.41491
-8.41980
-8.42347
-8.42751
-8.73645
-8.74635
-.01950
-.02576
-.02600
-.02629
-.02651
-.02676
-.05451
-.05576
4.97825
4.95249
4.92649
4.90020
4.87369
4.84693
4.79242
4.73666
95115
89638
84428
79470
74763
70296
62004
54532
9.85336
9.82760
9.80160
9.77531
9.74880
9.72204
9.66753
9.61177
0.7135
0.6724
0.6333
0.5961
0.5608
0.5273
0.4651
0.4090
0.714C
0.6730
0.6340
0.5970
0.5620
0.5290
0.467C
0.4110
-.0005
-.0006
-.0007
-.0009
-.0012
-.0017
-.0019
-.0020
0.33636| 0.52817
0.57932
0.72274
0.72274
0.60735
0 56596
0.59311
log yzT\ (log Pi - log Po)....
-8.14186
-8.26297
-8.26685
-8.27174
-8.27541
-8.27945
-8.58839
-8.59829
log pi — log po
-.01386
-.01832
-.01849
-.01870
-.01885
-.01903
-.03876
-.03965
log p
0.07088
0.05702
0.03870
0.02021
0.00151
9.98266
9.96363
9.92487
9.88522
P
1.1773
1.1403
1.0932
1.0476
1.0035
0.9609
0.9197
0.8411
0.7678
Pa* = P/Ra T
1.1773
1.1423
1.0900
1.0383
0.9853
0.9346
0.8883
0.8028
0.7227
P ~ Pa
log (n - 1)
.0000
- .0020
-9.07423
+ .0032
9.56902
+ .0093
9.73408
+ .0182
0.05899
+ .0263
0.05899
+ .0314
9.80949
+ .0383
9.69496
+ .0451
9.77225
log (» — 1) ( log Pi - log Po) . .
6.87973
-7.30382
-7.42161
-7.60799
-7.61166
-7.48159
-7.71739
- 7.77743
log Pi — logPo
+ .00076
-.00201
-.00264
-.00406
-.00409
-.00303
-.00522
-.00599
log P
2.45793
2.45869
2.45668
2.45404
2.44998
2.44589
2.44286
2.43764
2.43165
P
287.03
287.53
286.21
284.47
281.82
279.18
277.24
273.93
270.18
Check log P = log (P P P)
4.99775
4.97826
4.95250
4.92650
4.90020
4.87369
4.84693
4.79242
4.73666
Equations. (182) log Pi — log P 0 = r ” (log Pi — log P 0 ).
k — 1
(183) log pi - log po = (log Pi - log To).
(184) log Pi -logPo = (n - 1) (log Pi - log P 0 ).
(173) log P = log P + log p + log P.
Constants, log = 0.53927. log = 0.39121. loggoPm = 5.12489
Comparison of p (non-adiabatic) and p a (adiabatic).
p (non-adiabatic)
1.1773
1.1403
1.0932
1.0476
1.0035
0.9609
0.9197
0.8411
0.7678
p a (adiabatic)
1.1773
1.1423
1.0900
1.0383
0.9853
0.9346
0.8883
0.8028
0.7227
* The adiabatic density Pa is computed for R a = constant 287.03, and it is generally smaller than the true density p. All
discussions depending on p a , Ra, in the atmosphere are incorrect.
3
O
X
w
hH
z
o
>
W
>
H
o
w
o
Cl
►
H
I—I
o
2
in
Or
Or
THERMODYNAMIC METEOROLOGY