Full text: Sonderdrucke, Sammelband

12 
Curvarum genus aequatione (3) definitum omnes curvas ab. 111. Serret investigatas am 
plecti ex simplici transformatione elucet. 
Ut modulus functionis ellipticae computari posset, hanc recursionis formulam quaesivi 
p' 2 = 4p" — g»?— g 3 , 
r 
f’=:6(n'-hV’V) } 
p v = 6 (pp'" = f p'p" H- f p"p' fi- A 1 ), 
l(* + 2) 
6 fp p (,,) 
pp 
n{n 1) 
p"p(«-2) 
1 T r ’ 1.2 
sive signo symbolico 
(5) p(»+2) = 6 (pp' -f- p^) 71 . 
In nostro exemplo modulus definitur aequatione 
n (n— 1) , 
v > «i(n—2) 
1 . 2 
p(«-2)p" _|_ p(»—l)p' q_ p(«)p 
(6) 
p ” OJ 
p lv o/ 
. . p( 2 ™) to' 
p" OJ 
p lv OJ 
. . p* 2 ")« 
P IV a/ 
p VI a/ 
. . p ,2m + 2) o/ 
P IV OJ 
P VI OJ 
. . p( 2 ”+ 2 ) Oi 
pC 2 -) w ' 
p(2m-|-2) w ' _ 
. . p( 4m) oj' 
p( 2ro ) 0) 
P (2m + 2 ) co . 
. . p( 2,i + 2m ) OJ 
p" oj 
p IV OJ 
. . p( 2m ) 00 
p" co’ 
P IV co’ 
. . p( 2 ") u/ 
p IV w 
p VI o> 
. p( 2m + 2 ) OJ 
P IV OJ 
P VI co’ 
. . p( 2n + 2 ) W ’ 
p( 2n ) w 
p( 2n +2) OJ . 
. p( 2m + 2n ) OJ 
p( 2 *) OJ’ 
p(2"+2) (ju’ # 
. . p( 4n ) OJ 
= 0, 
quae satis simplex fit, quod derivationes impares evanescunt pro u — oj, w', w -+- w'. 
Primo substituimus enim recursionis formulam in m tam atque in ultimam seriem deter 
minantis et theoremate: „Cuique seriei alicujus determinantis aliquod multiplum alius seriei 
addi potest“ apte utimur, quam rationem simili modo continuamus. 
Neque minus determinantem simpliciorem reddere possumus satis magna potestate 
factoris e x — e 3 — p co — p co' sublata. 
(p (u) 
Exemplum II. 
dx-\-idy d 2> ' \. ( co \ . / o)' \ 
—ST ”7 Cl ’*dv?-> lg< T + TJ - ig«(«-- + 
Habemus igitur 
(2) 
* d 2 ’^ 1 \. 
+ r Cv 'S^+ 1 t g H M+_ 2 
jq = * 2 = 2 m — 1, x 3 = x 4 = 2 n, 
i ( 0J a) 
IgiT M— -y
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.