Full text: Sonderdrucke, Sammelband

Sill 
-x 1 
sive 
14 
1: ^ 
sive 
(4) ^ («') V" («’) H- Y (y j • V' ^y) = ° 1 Cl = 
Signis quartae paragraphi adhibitis deducitur 
(5) yj (w') = e. 2 — e 3 , u>" («') = 6 (ei — e\), 
xp (oj’) 
(6) — 
Conditio igitur, qua modulus definitur, est 
4 ^ (t) ■+■ 6 («» - «») es - «;>=o, 
81,8 (t) ~ (t) “ (3e? “ ie ^ ) = °- 
ionis inveni; 
p(2u) — e x 
Theoremate additionis invenimus 
(p 2 u — 2e a pw -+- i g-i — 2e 2 ,) 2 
ky'u — g^u — g 3 
(« = 1, 2, 3) 
Hac ex formula elucet quantitates p et P (¿°- y) eSSe ra( ^ ces aequationis 
(9) p 2 — 2tf,p -f- !^ 4 — 2e 2 — 0. 
Quantitate p igitur ex aequationibus (7) et (9) eliminata, habemus 
( J 23 e\ — 168 e\ e 2 e 3 -f- 240 e 2 e 2 e 2 -+- 256 e\ e% 
1 j j = (23 e\ -h 16 * 2 e 3 ) (e 2 - 4 e 3 ) 2 = 0. 
Quare modulus definitur aequatione 
(11) 23 e 2 -+- 16 e 2 e 3 = 0, 
quum e 2 — 4 e, e 3 = (e. 2 — e 3 ) 2 evanescere non liceat, ut pw sit functio elliptica. Inde sequitur 
(12) P (y) = l <?1; p (to' H—j = \e x 
fore radices aequationis (9). 
Integratione peracta oritur 
x-j- iy — 
) O'(»-<0 + -^)/ 
t \ / C i 1P i U 
(13) 
a u■ 
\«(u+y) 
f OJ 
G'\U — « -f- y 
o 
2 2/ V \ W 2 
O) oj’ \ ) 
— T/V 
si — c Y 7/ constantem integrationis constituimus. 
Qua in formula x iy mutatur in — (x ■+• iy), si argumentum u semi-periodo oj augetur. 
CJ 
Si porro u = Y"> f unc ti° x -+• iy ejusque derivationes prima et secunda evanescunt, 
quam ob rem habemus 
(14) x + iy — AeW+W) u 
( oj \ 
f 00 
\ ( 
OJ 
oj’ ' 
\ U+ Y/ 
1 <7( u—|—2— 
—OJ J (J\^u-+- 
“2 
~Y, 
V w w'Y 
V“ T""57 
à 
À, 
4
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.