Full text: Sonderdrucke, Sammelband

418 
L. Kiepekt. 
(127) 
» (& ln + -l)=y= T v[(‘‘ + i)l,2a + \]F( li ) 
(p~9q)nj 
„ »9 
V'l a -f- 1 
?>[(« +1)2» 2«+!] e 
Eni 
12 
Dabei ist 
E = — [p — 3q -{- (6ft + l) 2 g + 12ftg + 12p, + 2] 
— y (.P + Q.’ + 2 — 3 g) -j—[(3 p + 1) q’ + g + 1] 
— y (P + Q.' + 2 — 3g) -f- («+ 1)(2 4“ 1)4" 12ft(£ag 4-14-o:p , ). 
Da nun ft durch 4 theilbar ist und 
12 ¡a (« +1) = 24 £ a (a 2 + 2 « +1) = - 3 £ + £ g (4 a 2 -f-6 a-f-1) 
wird, so ist modulo 24 
E = j(p + q +2 — 3g) -\ (a + 1) (g' -f- 1) 
= j (p + 4 + 2 - 3 ä - n<i - 3g) + i(q + 1) (4« 2 + 6« + 1) 
= — p — 3 + £i?(12« 2 4- 18« 4- 3) 
= — p — 3 4- £if(6a 4" 3) == £i?g — p — 3. 
Man erhält also 
,«6 i n ,q\ (nig-p'—9)ni 
( 128 ) ?( /,3^±i)—j^ r 9[(«+l)i',(8«+l)]. 12 • 
III b . 7s£ g = 6«, so muss g'ungerade sein. Deshalb ist g'4~ 1 
durch 6 theilbar und ebenso p 4~ 1; man setze daher 
p 4- 1 = 6<7, q 4- 1 == 6r. 
Ferner sei p= — <?, also 
6^4-1 =— jp, (6 f t+l)g , 4-g+l = (l~|) , )g=(l-i)')gg , (mod.2g). 
Daraus folgt 
^^[(6/“+l) V+S+i+Srg'] ff, (3r+g—^'g) * qn -. (g-j/g-|-3) 
e q — e 1 = e q = r vv , 
wobei 
3 g' tt i 
(2a—2ap'+l) 
(2 a—2 ap'-f-l) q 1 nt 
— e 
2a—1 4 a—1 
2 rvv=rvv = j rp ^ 2a ~ 2a v + x ) 4 ^-
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.