lung bei einer
wohl, zu dem
dabei nur die
;h haben muss,
vielen Sterbe-
digen Leitung
Beiträge und
r bei der Ab-
ndiger mitge-
, dass solche
dichkeit unter
) machen, in-
:ht verbraucht
e Sterbegelder
Solvenz mit
1 vermeint-
ht einmal die
e s e r v e “, so
st. Der Vor-
„ Prämien-
ehrer auf der
1 ihre Kennt-
j von mathe-
rorhanden, in
m liegt, und
¡genheiten zu
teilen, ob die
einer Gesell-
> Gesellschaft
e ist? Oder,
h einer Ver-
Einblick in
Mögen solche
den meisten
Sachverstän-
ie aus einem
sen hat, was
chte, könnte
llschaften an
itscommissar
finer kleinen
swesen abge-
esters könnte
diesem Vor-
ligermaassen
1, auf der sie
ken könnten.
Abtheilung für Mathematik.
19
Ich würde natürlich die Einrichtung einer so kleinen Vorlesung nur als den
erwünschten Anfang zu einer planmässigen Ausbildung von Versicherungstech
nikern betrachten und will daher mit meinen bescheidenen Wünschen den weiter
gehenden Bestrebungen gewiss nicht entgegentreten, welche, wie mir in diesen
Tagen privatim mitgetheilt worden ist, augenblicklich in Oesterreich auf der
Tagesordnung stehen. Diese Bestrebungen waren mir theilweise schon aus einem
Aufsatze bekannt, den Herr Dr. Ernst Blaschke in der österreichischen Beamten
zeitung veröffentlicht hat, und in dem er verlangt, dass eine Instanz geschaffen
werde, mittels deren es möglich wäre, Mathematiker als Sachverständige in der
Lebensversicherung zu prüfen und hiernach staatlich als Sachverständige anzu
erkennen. Zu diesem Zwecke stellt Herr Dr. Blaschke unter Hinweis auf die
englischen Einrichtungen die folgenden Forderungen:
1. die Feststellung eines Unterrichtsprogramms für die Vorbereitung auf
das Sachverständigenamt,
2. Namhaftmachung einer Schule, an welcher dasselbe zu absolviren wäre,
3. Feststellung der Erfordernisse für Ablegung von Prüfungen, auf Grund
deren die Autorisation zu ertheilen wäre,
4. Ernennung einer bezüglichen Prüfungs-Commission,
5. eine Verordnung bezw. ein Specialgesetz, nach welchem gemäss der Er
füllung aller Vorbedingungen seitens der Candidaten die Autorisation ausgesprochen
werden könnte.
Im grossen und ganzen schliesse ich mich den Wünschen und auch den
sonstigen Ausführungen des Herrn Dr. Blaschke an, nur gegen die zweite Forde
rung muss ich entschieden Stellung nehmen, dass nämlich nur eine solche Schule,
für welche, wie ich höre, die technische Hochschule in Wien in Aussicht genommen
ist, namhaft gemacht werde; ich möchte vielmehr den Wunsch aussprechen, dass
Einrichtungen zur Ausbildung von Versicherungstechnikern an sämmtlichen Uni
versitäten geschaffen würden.
Obgleich ich selbst Professor an einer technischen Hochschule bin und als
solcher Vorlesungen über Versicherungswesen gehalten habe, ist es mir gar nicht
zweifelhaft, dass die Ausbildung der Versicherungstechniker nicht an die tech
nische Hochschule, sondern an die Universität gehört.
Das folgt schon aus Allem, was ich bisher gesagt habe, insbesondere möchte
ich aber noch die folgenden Gründe hinzufügen.
1. Wenn es nur auf die Fertigkeit ankäme, Tarife oder Prämienreserven
auszurechnen, so könnte man dazu, wie ich aus meiner Erfahrung weiss, auch Leute
ausbilden, welche eine niedere Schule besucht haben; für den mathematischen Sach
verständigen bedarf es aber vor allen Dingen der mathematischen Schulung
d e s G e i s t e s, wie sie nur den Studirenden der Mathematik an den Universitäten
geboten wird. Auch das, was der zukünftige Versicherungsdirector ausserdem braucht,
findet er in vollem Umfange nur an der Universität. Ausser der Volkswirtschafts
lehre und einigen juristischen Vorträgen würden nämlich noch medicinische
Vorlesungen in Betracht kommen, denn bei der Entscheidung über die Aufnahme
neuer Versicherter muss der Director wissen, ob die Krankheiten, welche der An
tragsteller überstanden hat, die Lebensdauer verkürzen oder nicht.
2. Die Einrichtung einer Fachschule für Versicherungstechniker an den tech
nischen Hochschulen würde daher nur möglich sein durch die Heranziehung be
sonderer Lehrkräfte, während an den Universitäten die erforderlichen Lehrkräfte
schon bereit sind.
3. An den technischen Hochschulen würden die Vorträge über Versicherungs
wesen nur von solchen besucht werden, welche von vorn herein die Absicht haben,
Versicherungstechniker zu werden, denn die anderen Studirenden, mögen sie Archi-
2*
Mathematische Wissenschaften.
H. Schröter, Theorie der Oberflächen zweiter
Ordnung und der Raumcurven dritter Ordnung
als Erzeugnisse projectivischer Gebilde. Nach
Jakob Steiners Principien auf synthetischem
Wege abgeleitet. Leipzig, Teubner, 1880. 720 S.
gr. 8°. M. 16.
Jakob Steiner sagt in der Vorrede zu seinem
Hauptwerke „Systematische Entwickelung der Ab
hängigkeit geometrischer Gestalten” (Berlin i832), dass
te zwischen dem
gen von Herrn
Aufl. Hannover
loch der Unter-
rofser, wie vor
sein mag. Herr
thoden und Be-
eht auch Mafs-
■ Betrachtungen,
nzahi von inter-
Ltigt werden, die
rsuchungen über
tigen Kegel, über
ige Hyperboloid,
die Durchmesser
die Focalkegel-
chaften, über die
dnung u. dgl. m.
tiden Stoffes sehr
J wol auch zuzu
schreiben ist, dass sich der Herr Verf. auf die Unter
suchung der Flächen zweiter Ordnung und der
Raumcurven dritter Ordnung beschränkt hat. Nur
im letzten Paragraphen findet sich eine kurze An
deutung über das Vorkommen einer Fläche dritter
Ordnung, insofern sie der geometrische Ort für die
Pole einer Ebene in Bezug auf die sämmtlichen
Flächen eines Flächenbündels zweiter Ordnung ist.
Dagegen sind alle Untersuchungen, welche sich aut
die Flächen zweiter Ordnung und auf die Raum
curven dritter Ordnung beziehen, mit rühmenswerter
Gründlichkeit und mit dem Zwecke entsprechender
Vollständigkeit zu einem organischen Ganzen zu
sammengestellt, sodass das mathematische Publikum
dem geschätzten Herrn Verf. zu aufrichtigem Danke
für sein schätzbares Werk verpflichtet ist.
An diesen Dank sei noch die Bitte geknüpft,
dass Herr Sch. dem vorliegenden Buche noch manche
Fortsetzung folgen lasse.
Hannover. L. Kiepert.
bestehen werde,
i andre in Ver-
on diesen sieben
;n, sodass der
bahnbrechenden
selbst zur Aus
wurde sein Plan
.chritt gefördert,
Herren Schröter
während das vor-
Vbschluss dessen
jmatischen Ent-
hier behandelten
r damals bekannt
lat aufser den
herrühren, alle
Gebiete publiciert
gesichtet und zu
;t. Zum grofsen
rngen des Herrn
welche das Werk