of block diagonality of the inverse covariance matrices W and W, for when
these matrices are of the respective forms
W dine M eer e)
(6m, 6m) (618) (626 (6,6)
(2) P2281 s
diag ( W, Wut tam
W =
the general system of normal equations assumes the following fine structure
° . je E e e e 7
NSW 0 D 0 } af Qo Nia | | & q -Me
e * 1 e e e
o Un We e. 0 N21 N22... Nan | | 82 €? = Wr
3
. e. €. i . *. e . e
e e e i e e e e e.
° ° . Ü e ° e ° °
© ° 4 . e e eo
i sen — -—
0 0 ... N x + W a : Na Nm, seo N 6 c = We
€» GN «p am GP GU Ge Sv Ov Go Bh GN m Gà QD CD €» OU G9 SE EE Ge Sm We OW 3 e G mo us qe Gm U ae ee Go BY GY oe © Gn ou GO €» €» SN Ge UD u. ee = = = e» s € €» Ww We 99
(3) —-— T -— T oT 1 LI] LI . .. ee es .
Ni Na s 0 Na IN*W D ees 0 & q-W 6
dem T i T b T 1 e ee oe oe eo e
Ni? N22 ... No § 0 N, + Ww, ... 0 52 C2 - W»€»
i
e ° e. 8 e e e e e
e. . 9 i e. e. r] e. e.
° e 8 e e e e e.
8 :
Kl M N 1 0 0 ec oe t vo ee oo
In 2n ev mn 8 ses NW. n | | ^n - Wi n
„A — . a)
in which
à; = 6x1 vector of corrections to elements of exterior orien-
tation of Zth photo,
Su = 3x1 vector of corrections to coordinates of jth object point,
£, = 6x1 subvector of € corresponding to 1th photo,
£j = 3x1 subvector of É corresponding to jth point,
and
e n . e n e
N; = D N; j ’ CP p ej :
J=1 J=1
(4)
Hg eo ® oglips Bd beer pu Ho fapen Bd
The terms NN Nr 20s all appear in the following indeterminate sub-
system of normal equations
CO
1i
im]
as
sm.
le:
fot
ap
aer
in
nor
It
of
nor
AP|
the
red
the