The linearized form of equation (1) is:
-f9 (Xy) f Ay, -f, ATv
where g,29g?(xy)/8xg , g,=09°(xy)/dyg
fom of (xy)ox, , f 20f? (xy)/9y,
Using the notations
x T=(ATy |, ATy |, ATy ATyg AS4, AS), AR, AR)
1=19(xy)-g°(xy)
1
Aj 2 (fy fy B gy OxXR.GyYR 9xYn: 9yXn)j
A La i-th row of the design matrix A
equation (3) result in
-e(xy)s Ax-1 ; P
expressed in linearized form as:
ATy | + (dF /9Z)AZ + FXO) +x,°=0
ATyı+(9F,Y /9Z)AZ +FLY©® «y,?-0
ATy g+ (9Fp* 132) AZ « Fg) +xp°=0
ATy p+ (Fg! /9Z) AZ «Fg! +yp°=0
where FX, FY ..... nonlinear collinearity conditions ; i=L, R
x 9 ,y P ..... initial image coordinates of patch centers
; i=L,R
t y
X.......vector of parameters
B, .....design matrix of parameters
|
equations (9) result in
B; X li = 0
Equations (8) and (11) form the joint system
-e(xy)=Ax-1 ; P
Bx+t=0
- 286 -
-e(xy)=0g°(xy) +0, ATy g +9, XgAS +0, YR AR, +9, ATy gp +0, XR AR, +g, YRAS -
With the assumption of given interior and exterior orientation and fixed X,Y-object point
coordinates, the geometric constraints as derived from the collinearity conditions can be
(3)
(4a)
(4b)
=
(8)
(9a)
(12a)
(12b)