05) Substituting (111) into (110) we have:
t
a-l
tan (z a T
06) ^. (a, o ‘a 1-0 t ,a-l |
a € 1 - (1 +7) dt (112)
a
9 0
a-l |
tan
A kz), o T° A t 2 Di
07) a T pê-1 a TT toe (113)
> a |
a a
o -T
0 &-1l a p
Ato nla), [00 AL (1s) |
To e(T,-T,)
98) or ' q^ - mé
n &-l a p
A, =A Lan Giu = a(T -T ) (115)
& p
where
%
A = p" T T. * LH
)9) mé a 9 8
O
a=- à T T t4 LH
y | p p
From Figure 12 or 14 we have:
0) TRL, 10, | (116)
where tv 1s angular refraction, and A, is the refraction of an aerial observer,
From 95 follows:
m, rin (2), :
n ” r, sin (z) (117)
r ;
with (116), setting + A 1, end with 7 being a small angle,
a
1) we may write (117) as:
n
='=1 +17 ctn (z), (118)
P
6T
1 cor 3 i * > I ; 2 ie it. ; f : i ne non 3