The solutions of these simple equations
dz, = 0
dy, — 0
DX,
db — ——
n
DY,
dx — —
bn
The corrections to the preliminary X-
39
are
and Y-coordinates along the
strip are for an arbitrary point à? with the coordinates X,Y,
: Y DY,
0X, = —— —
bn
X; D Y,
bn
X, DX,
RY RUE OT 9
bn (20)
Y.DX,
(130)
bn
The corrections are added to the errors according to the expressions
(111) and (112). The remaining (residual) error Ey and Ry after the
corrections can therefore in an arbitrary
principal point p be written
By = DX, + CX,
Ry, = DY, + CY
p
After substitution of the expressions for DX,, DY,, DX, and DY,
from (111) and (112) we find for the point p with the coordinates
X, — bp
y 7 0
1 p i Dp
Ry = Z (p — à +1)d6:-16 + à dag, 1
i=1 i=1
l n |
x ^
Los da.
i 1 |
i=D i=p
Ry b > (p—i+1)da, 1: + À do,
i=) i=l
) 2 n
un (n — 4 4- 1) db; iT
n |: 1
(131)
) 1 n
LS (n—i+
n | i=1
(132)
LS