Full text: Proceedings, XXth congress (Part 2)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
    
  
  
  
  
  
  
  
  
  
   
  
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XXXV, Part B2. Istanbul 2004 Interna 
Difference of points Difference of points (95 
: Difference of pointe Difference of points (95%) 
5 15 | is 
" l | } in 
| | : 
8 s 1 | i $ ; | 5 
| LE 5 Q. T i bh 1 JE 
4j xx ib 5 rd ; 
ul By a Py i is, 
um T i E MOM M NUM ! t gp ve, 
1000 a NEO 00 re ND SS. 
m 100 x E um 
0 Neo Wm 5 
"n U 
Dif Distibution & Stat Df Distribution & Stat (8559) 
1 + x * 7 17 , + ' 3 D4 Distribution & Stat Cf Oistribution £& Stat (35%) 
1 1 
09 0a! : 
0.9 1 0.9 1 
on ve} 89 
i 08 1 Ce 1 
O7} pat Vide: 18544 07} Ipgut Values TET36 08 
Walid Values: 15295 or parcem 61 1664 | Vakd Values: 14787 or percent (O 0446 07} Mput Values. 72528 1 07} Input Values. 70777 1 Input Va 
0.6} mean: 0.499722 06} mesn. -0.53723 Valid Vslues. 52100 or percert B5 EOS V'slid Vstues: £0338 or percent 85.2500 07 MA 
irimrer mean 7% 4) 49915 | durmerusd rnéan 2Ue 0 3792 UB mean 0 10158 4 OB} man DEE J : vas 
06! stáder 17332 05] std der. 1.7455 trimmed mean 2*6: 0, 11162 trimmed mean 2% 411051 un m 
mesn sbsolute devistion: 14137 | mean absolute deastion | 2229 DS} stddew 0.94183 | 4 0.5} std dev 0.932123 |} à 95 en 
0.4} rangs: 10.2492 D4} range. 10.2492 1 trien abili: dign 1158337 an abel: devin O BALA cap e = 
skewness: 0.013064 | skewness. 0.020944 HA range; 21 2077 | 1 Ua ge: 20.8213 | | i ii sous al 
0.3} kudeas 2h42 1 n3: kutlasn 7 454 4 uke | JAHRE | tame D BO THE | A rage 
i "T kunosis: 13.9609 } | 1 UE} kurtosis 142101 | | skewne 
02 ~~ 0.2} J f | | 03? kırtoras 
| 0 i) n? | d uy 
a1 x 0.4} \ ; 
: | | \ 1 had 01 | \ 
o / ‘ x / à 0.1 
10 A D 5 10 Yl 5 Tn 5 10 "n 2 s u 2 
ia 5 0 = 10 10 5 0 5 10 n--———m 
1 
Figure 5. Visualization and statistical analysis of the SE ani 
differences between the manually collected and : 
the artificially distorted DEM (prior to 
. 15 15 
correction). = ‘ 
10 4- : : wl fs. 
; | npa M b | í 
These values become much more elegant and impressive if ; y At | li | 57 4 
one considers the same statistics for the DEM prior to siu SS af ) i 
corrections (fig. 5). The improvement of the shape of the no A s 5 
. v . . . = ne A uo ERA = T 
error distribution is devastating. Values of the statistical addo ! ux A TH # TUR. " 
analysis also justify the fact that the uncorrected DEM is aM n ig 7 ^ um 154 
5 iu M o 1 17 Aet MED C rat ip pos. 
much worse than the corrected one; mean -0.54, SD 1.74, Ses vom es _ 100 m 
oh E M oet 000 
MAD 1.42 meters and RMS 1.82. Le, eu CT i 
4.2 Application of the method over automatically 
collected DEMS. Uhil Pastibutiun € ital Did Chstribulion £ Sti (5%) 
1 Y I 
A recent research in the National Technical University of 08 | os | IF. 
Athens, laboratory of photogrammetry, concerned with image 08 i 0.0 us 
matching in color images, has automatically created 24 eri nu Values xm Pa 1 0 M 
: SER E dr = ; ES Valid Values. 28081 er percent 1OO d laid Ns 
DEMs using different software (Vision's Softplotter, Erdas HE} mean 0 13314 bl 1 ve hat es 
a Gn : . : niim 08527 | ME. 
OrthoPro and Z/I SSK). In order to test algorithm's integrity 05 H Ma] odd de DRAGS | | 1 id Be 
A ; NP bsolute deyist-an. 0.44352 mean absolute deviation 0.35326 + eme 
over real data, two DEMS created with Softplotter have been 0A} me MON 04f range 0736 | | 25) adder 
~ : : : ^ kewness. -1.1322 | | shewness: 018347) sap anal 
selected for testing with the proposed algorithm. Softplotter a3] es emo | | n3] katie 20700. | (at range 2 
= | A 1 sever 
allows the user to decide whether he wants the collected 02 j| ü2 i | 9.28 kurtesis 
points to be in a regular spacing or in random positions, 01 fo 01 Pd gs 
producing respectively Digital Terrain Model (DTM) and ü ; ol + ed $i 
S > ENS ur 10 E j # Yd 1 1 ^ n 
Iriangulated Irregular Network (TIN), accordingly to gm 
software's parameters (from now on, both freely referred as ; E set = 
Sere gp pae e A ow on, bc m 5 = ed > Figure 6. Initial (upper) and corrected DEM (lower) 
s). Th al surfaces are same, basically due to the ; : 1T eur 
diff 9. qne iie ur e s Not same, N ica ; t s ne comparison with the manually collected TIN. Figure 
erent appr in the collection procedure rather than 5; Y LAM ot: : ; c 
e et | pt eat amt f Sete I | ume ra an.to Visualization and statistics of the DEM collected 
the final interpolation performe he last step. epYT M? Cot 
ae Hm. Polation pe ep at the i e with the “DTM” method on the Softplotter. 
Althoug 
for sta 
summar 
556
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.