0°),
X
m
f
5
g
g
into
x 1 cosa X
T (3)
y 0 sina y
Formula (3) is the formula with which
the coordinates of a point in plane
rectangular coordinate system can be got
from the corresponding coordinates in
plane «-angle coordinate system.
Similarly,if 41-90 anda»-e,formula (2)
becomes into
x' 1 —ctga fx
= (4)
y 0 esca y
Formula (4) is the formula with which
the coordinates of a point in plane
4 -angle coordinate system can be got
from the corresponding coordinates in
plane rectangular coordinate system.
In fact, formula (2) can be infered
from formulas (3) and (4) .Firstly , the
coordinates in plane o —angle coordinate
system are transformed into rectangular
coordinates by using formula (3).
Xr 1 cosa: X
2 (5)
yr 0 sina; y
And then the rectangular coordinates
are be transformed into ones in plane
œ -angle coordinate system by using
formula (4).
x' 1 —ctga2 Xr
Il
(6)
y 0 esca 2 yr
Considered formulas (5) and (6) , the
following formula is obtained:
x' 1 —ctga2z 1 cosa; X
y 0 esca 2 0 sina; y
i sin (222—241) X
sina 2
= sina 1
0 E y
sina 2
It is evident that the above formula is
as same as formula (2).
3.Translation and Rotation of Plane
c -angle coordinate System
i)Translation
Suppose XOY is a plane 4-angle coordinate
system with zero point O and X'O'Y'is the
same coordinate system but with zero
point O',then the relation between (x,y)
and (x',y') is
x' X Xo
= = (7)
y y Yo
See Fig.3. Here (x,y) and (x',y') are the
coordinates of point M in XOY and X'O'Y'
respectively, and(xo, yo)are the coordinates
of O' in XOY.
Fig.3
ii)Rotation
Suppose ¥'0'Y' is a plane c -angle
coordinate system got by rotating the XOY
with a angle of 68 and the coordinates of
point M in XOY and X'O'Y' are (x,y) and
(x',y') respectively.In Fig.4,
x =0Mi=ON+NM',
InAONMi; - : r
ZM10N-z6 , ZOMiN-180 —a , ZONM;, =a —6
Then the following formulas can be
obtained by using the theorem of sine.
OM X
ÓNZ nl. sin (180? — a ) 2————————— sina
sin (a —6) sin (a —6)
OM
M Neo! inei. sing
sin (a —6) sin (a — 6)
MN=MM, —M,N=y ——! sine
sin (a —6)
MN : MN
NMiz———-— ——— - sino —— — —- sino
sin (180° —a) sina
finally fomula (8) is obtained.
in sin? « —sin? 0 sind
^ Sinesin (a —6) sina
sind sin (a —80)
Xx
"e
sina sina
Formula (8) can also be expressed
in the form of matrix as
x’ sin? a — sin? 0 sing
"sinasin(a —6) sina x (33
= sind sin (a —6) 9
y sine sina y
In formula (9),the matrix
sin?a —sin?6 sin6
= sinasin (a — 0) sina
A= sind sin (a —6)
^ sin« sina
is the rotation trasformation
matrix of plane d -angle coordinate
system.It is easily proved that
| Al =1
sin (a —6) sin6
sina sina
A-!= : :
sind sin? « — sin? 6
^ sine sinasin (« —0) J
Specially , if a =90°, formula (9)
becomes into
x' cosó sinó X
- (10)
y — sind cosû y