HILLY
25 of
Vol. 29,
Fundamental Analytic of Satellite CCD Camera Imagery Using Affine Transformation
Tetsu Ono,
Kyoto University
Atsushi Okamoto, Kyoto University
Susumu Hattori,
Fukuyama University
Hiroyuki Hasegawa, PASCO Corporation
COMMISSION III
KEY WORDS: Satellite CCD Camera Imagery, Affine Transformation
ABSTRACT
An orientation theory of two-dimensional affine imagery was first presented by Okamoto (1992), which can be
applied for ultra-precise measurement of very small objects. This theory may be employed for the analysis of
satellite CCD camera imagery by clarifying the geometrical characteristics of the model connection problem with
adjacent stereo models and transforming the central-perspective images into affine ones. Therefore, in this paper, the
orientation and model connection problems of two-dimensional affine images are first discussed in detail. Then, the
transformation of central-perspective images into affine ones is explained with correction of the image
transformation errors due to height differences in the terrain. The proposed method was applied for space
triangulation of simulated satellite CCD camera images taken consecutively and proved to have a fairly high
accuracy.
INTRODUCTION
In satellite photogrammetry, imaging devices (CCD
camera and CCD line-scanner) have usually very narrow
field angle. Therefore, we encounter great difficulty to
apply the conventional orientation theory based on
projective transformation for the analysis of satellite
imagery. In order to overcome this problem, we should
develop another orientation theory. Affine
transformation may be a very promising one, because
affine transformation pertains to parallel projection and
thus the flying height of the satellite plays no role in
the geometry of an affine image.
The orientation theory of two-dimensional affine
images was first derived by Okamoto in 1992. In order
to employ this theory for the analysis of satellite CCD
camera imagery, the central-perspective imagery must
be transformed into an affine one by using the
approximations of the orientation parameters. This
image transformation cannot be carried out without
errors due to both deviations of the approximations and
height differences in the terrain. Thus, a correction
method of the image transformation errors is required.
In this paper, the orientation problem of
two-dimensional affine imagery is extended to the
model connection with adjacent stereo models so as to
discuss space triangulation of satellite CCD camera
imagery based on affine transformation. Then, the
transformation of central-perspective images into affine
ones is described in detail and the correction of the
image transformation errors is discussed, in which they
are classified into two types: errors due to deviations of
the approximations of the orientation parameters and
errors caused by height differences in the terrain. The
611
International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996
methods proposed here are tested with simulated
examples so as to explore the difficulties when
applying them to practical cases.
GENERAL ORIENTATION THEORY OF TWO-DI-
MENSIONAL AFFINE IMAGES
ORIENTATION PROBLEM OF A STEREOPAIR OF
AFFINE IMAGES
Let a three-dimensional object space (X, Y, Z) be
projected into a plane based on affine transformation
(See Figure-1.). The basic equations relating an object
measured image plane
(affine image)
object space
X
Figure-1 : parallel projection of an object space
into the measured plane of the compa-
rator coordinate system
LAB es CESSE ES i PE : 4