bration.
ent methods in
togrammetric Record,
jision in. Close-Range
ry Engineering and
1982 pp.561-570
nization and Design of
>
International Archives of Photogrammetry and Remote Sensing. Vol. XXXII, Part 5. Hakodate 1998
DETERMINATION OF CAMERA'S ORIENTATION PARAMETERS BASED ON LINE FEATURES
Tianen CHEN, R.S. SHIBASAKI (Associate Professor)
IIS, University of Tokyo
7-22-1 Roppongi, Minato-ku, Tokyo 106-0032
E-mail: chen@skl.iis.u-tokyo.ac.jp
Japan
Commission V, Working Group V/1
Keywords: exterior orientation, straight lines, space resection, robust.
Abstract
Determining camera’s orientation parameters is one of the most important tasks in photogrammetry and robot
vision. The paper presented a new mathematical model to determine the position and attitude of camera. The
technique employed the coplanar relationship of the projection center, 3D straight line and its 2D image to
construct the basic constrain equations. In the processing, the position and attitude of camera were divided into
two steps and computed respectively. Since amount of obvious known geometrical objects such as horizontal and
vertical lines exist in man-made environment, they are all be able to be used as controls effectively in our new
method. This made it possible to do the space resection with fewer absolute controls. The method was based on
stronger theory of mathematics and geometric, so it’s robust, accurate and possesses semi or full automation.
The proposed approach was tested with simulated and real data. The result verified the method robust,
accurate and reliable automation.
1. INTRODUCTION
Determining the orientation parameters of camera is
one of the most fundamental tasks in photogrammetry
and machine vision. These parameters include
camera's position and orientation (exterior parameters)
in world coordinate system, the true image center, scale
factor and the lens focal length (interior parameters)
and the distortions of lens (radial and decentring). For
the past decades, a lot of methods have been developed
and served us well in many applications ( Fukui, 1981;
Lenz and Tsai, 1988; Fischler and Bolles,1981; Tsai,
1986; Maybank and Faugeras, 1992 ). However, among
these methods almost all are point-based. They are
more and more not enough for the need of the coming of
digital photogrammetric era because of their several
weaknesses: time consuming, error-prone, necessity of
some sort of structured target or calibration range, and
difficulty of automation.
Straight edges are the most popular features in large
scale images of man-made environment. From the view
point of image processing, they are easier detected and
extracted from a digital noisy image at subpixel
accuracy than point features. This makes the
measurement automatically In addition, amount of
geometric constrains such as parallel, perpendicular,
horizontal and vertical can be used as controls. These
characters make them used in many applications such
as determining the camera's orientation parameters
automatically relative and absolute orientation
( Mulawa and Mikhail, 1988; Tommaselli and Lugnani,
23
1988; Dhome et al, 1989; C.L. Tozzi, 1986; Chen et al,
1989; Salari and Jong 1990; Liu et al 1990; Wang and
Tsai, 1990; Lee et al, 1990; Echigo, 1990; Chen and
Jiang, 1991; Chen and Tsai, 1991; Tommaselli and
Tozzi, 1992).
The paper presented a new mathematical model
which is based on the coplanar condition constructed by
the perspective center, straight line in object space and
its projection on the image plane to determine the
camera’s exterior parameters. In the method the
exterior orientation parameters were divided into two
groups (position and attitude) and calculated
respectively. This character makes it possible to use
some known information provided by GPS and INS and
reduce the calculation.
In this method the calibration targets include a set of
parallel lines (horizontal and vertical) and one more
known control lines. These straight lines are extracted
with dynamic programming method firstly and then
fitted in the least square from simulated and real
images. The sub-pixel measuring accuracy of image can
be ensured.
2. MATHEMATICAL MODEL
As other computer vision applications we take the
interior parameters of the camera remain as stable in
the solution and calibrated in advance. In addition, the
lens distortion parameters are known.