an N TE TTE P EE ER DEE AA A
co co inc
V. t) 7 35 kn je mn X (5.1)
= =00[]==00
t T Sim
is -ik x of
Vea) 7 ur | fee mt ax, (5.2)
T
7 TT
where we have defined the generalized coordinate, x and wave vector k
A ky m
X = (6.1) k = = (6.2). ,
3 + mno. à
t n
m is the zonal wavenumber, and
sin 21
is the nth discrete angular frequency (Fig. 3). Y(k__) is the space-time
spectrum of y, defined on integer wavenumbers m and”FRequencies GL
corresponds to a double Fourier transform of y over the (synoptic rectangle
D = [-m,m]X[-T/2,T/2] oriented parallel to the A,t axes (Fig. 4).
$ (a) (b)
r l^ k,
ON Du.
f urn = N ky
7 A y b e A D, er 0s
e. I / |
d Do / | Note
T i and
NE =F x I :
"E c + de 4 À 1 1 equi
iy . AR stri
s J^ ks Thus
hs
-1/2
wher
Fig. 3 Coordinate geometry in a) physical plane. Asynoptic 8, r coordinates are hybrids of longitude and time.
Because of zonal periodicity, each element D. is equivalent to its periodic image; hence the integration
may be performed over the strip of elements Qiong the 8 axis. b) Transform plane ky» kes k., k, are
wavenumber components along respective axes. 8
158