Object: Theorie der Determinanten und ihre hauptsächlichen Anwendungen

12 
(19.) M 1 Ä 1 + M 2 *a + . . . + U n Z n = VyXy 4- V 2 X-1 4 + \x n 
Die Gleichungen (17) bestehen für jeden Werth von u x , u 2 ... u n ; sind daher 
diese Grössen alle gleich Null, während x x , x. 2 ... x n nicht Null sein können, so wird 
P = 0 
sein müssen; wonach diese Gleichung das Resultat der Elimination der Unbekannten 
it-j, x 2 ... x n aus der Gruppe der Gleichungen: 
= 0 
(20.) 
"+■ • ■ 
• 4- Cl l 
a 2 1 x x 4- a 2 2 i 
r 2 + • • 
■ + «*• 
«re,!®! +«re,2 
®2 + * 
. . 4- a 
= 0 
ist; ebenso wie sie auch das Resultat der Elimination der Unbekannten * lS 
aus der Gruppe (18) ist, wenn v t = v 2 = . . . = v n = 0 angenommen wird. 
Wenn man voraussetzt: 
u i — « 1>0 *0 •> U 2 ~ «2,0 X 0 ‘ ’ U n ~ «re,0 J n 
geben die Gleichungen (17) die Folgenden: 
Px t = 
*©(«1,0 «1,1 + «2.0 «2,1 + ‘ ' 
• + «/*,0 
P*2 = 
®0 («1,0 «1,2 + «2,0 «2,2 + * 
’ • + «re,0 
F Xn = 
— ® 0 («1,0 «1,« + «2,0 «2,re + ‘ ' 
' * + «re,0 
aus denen; 
(21.) 
x Q 
: Xj : x 2 
: .... 
: X n = 
«1,1 «1,2 * 
• « 
«1,0 «1,2 - * 
• «l,re 
1 «1,1 «1,2 • 
• «1,0 
«2,1 «2,2 * 
¿,n 
: zt 
«2,0 «2,2 • ‘ 
* «2,re 
. _L i «2 1 «2,2 • 
1 
* «2,0 
«re,l «re,2 * 
. ö 
n } n 
«re,0 «re,2 • * 
' «w,w 
| «re,1 «re,2 * 
• «re.O 
Diese Proportionen geben die Werthe der Verhältnisse der n 4- 1 Unbekannten 
in den n Gleichungen: 
«io®©-*-«1.1*1 + • • • +a t .T_ = 0 
*2,0 *0 + «2 1 X 1 
(22.) 
ln n 
<*onX n -h Cf.,, X, 4- ... 4- a 2n X n = 0 
\o x o + «re,l X 1 + 
a x — 0 
n % n n 
Anwendungen. 
1. Wenn man die Coordinaten irgend eines Punktes einer Ebene mit - , - 
a a. 
bezeichnet, so ist die Gleichung eines in dieser Ebene liegenden Kegelschnittes: 
(fi = ax 2 + by 2 4 cz 2 + 2eyz + 2fxz 4- 2hxy = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.