200
POWER SERIES
Hence
1 — («o + a 2^ 2 + ‘ ’ O ( 1 — + ^7
X 2
= a 0 + (“» - fj/ + (“4 - ft + ft/
+ ( a ‘-f! + fl-7!y + (“*-^ + fl-n + fiy +
Comparing like coefficients gives
ük — o
3!
1
a 2 = 7i-
b
360'
Thus
a _ /i + _ a 2 _ Za = 0 .-.a = ^
6 3 ! + 5! 7! ' 6 3-7!'
1 = 1 _i_ 1 ^ _i_ _!L ^ i _§J_ ^5 I ...
sin x x 6 360 3 • 7 !
valid in ( — 7T*, 7r*).
166. Let
where
(4
^C*0 =/!(>)+/2 <>)+
/»0*0 = «„o + a Bl * + a n2 x 2 + ••• n = 1, 2 •••
Let the adjoint series
«»o 4- a ni£ + <*»2! 2 + * * •
converge for % — R and have </> n as sums for this value of f.
<& = (f) 1 + (f> 2 + •••
converge. Then J 7 converges uniformly in 51 = (— R, R) and F
may be developed as a power series, valid in 51, by summing by
columns the double series
a 10 + «11* + «la* 2 + ”•
4” **20 4” **21*^ 4" **22^ 2 4~ ■■■
+ a 30 + a 31 x + a 32 x 2 + •••
(1