Full text: Lectures on the theory of functions of real variables (Volume 2)

200 
POWER SERIES 
Hence 
1 — («o + a 2^ 2 + ‘ ’ O ( 1 — + ^7 
X 2 
= a 0 + (“» - fj/ + (“4 - ft + ft/ 
+ ( a ‘-f! + fl-7!y + (“*-^ + fl-n + fiy + 
Comparing like coefficients gives 
ük — o 
3! 
1 
a 2 = 7i- 
b 
360' 
Thus 
a _ /i + _ a 2 _ Za = 0 .-.a = ^ 
6 3 ! + 5! 7! ' 6 3-7!' 
1 = 1 _i_ 1 ^ _i_ _!L ^ i _§J_ ^5 I ... 
sin x x 6 360 3 • 7 ! 
valid in ( — 7T*, 7r*). 
166. Let 
where 
(4 
^C*0 =/!(>)+/2 <>)+ 
/»0*0 = «„o + a Bl * + a n2 x 2 + ••• n = 1, 2 ••• 
Let the adjoint series 
«»o 4- a ni£ + <*»2! 2 + * * • 
converge for % — R and have </> n as sums for this value of f. 
<& = (f) 1 + (f> 2 + ••• 
converge. Then J 7 converges uniformly in 51 = (— R, R) and F 
may be developed as a power series, valid in 51, by summing by 
columns the double series 
a 10 + «11* + «la* 2 + ”• 
4” **20 4” **21*^ 4" **22^ 2 4~ ■■■ 
+ a 30 + a 31 x + a 32 x 2 + ••• 
(1
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.