CIRCULAR LOCI.
Ill
The conditions are
n — n
and a + a" = a' + a'", or a + a" = 2ît — (a + a'").
Lhuilier: EUmens d? Analyse Géométrique et d : Analyse
Algébrique, p. 144.
18. To find the locus of a point in the plane of a triangle,
such that, if perpendiculars be drawn from it upon the directions
of its sides, the area of the triangle, formed by straight lines
joining the feet of the three perpendiculars, may be constant.
If the equations to the three sides of the triangle be
£ccosa + ?/ sina = 8, x cos a' + y sin a' = 8', x cos a" + y sin a" = 8",
and Id be the constant area, the required locus will be two
circles denoted by the double equation
(
sin (a"—a'
± 2& 2 = (x 2 +y 2 ) sin a sin d sin a
H ; 7
sm a
+ 8 sin (a' — a") {x cos (a + a" — a) + y sin (a' + a" — a)}
+ 8' sin (a" — a) {x cos (a" + a — a) + y sin (a" + a — a')}
+ 8" sin (a — a') [x cos (a + a' — a") + y sin (a + a' — a")}
(sin (a — a') sin (a — a") sin (a" — a))
+ ôôè | ÿ +— l — + — f —p
Querret : Gergonne, Annales de Mathématiques, tom. XIV. p. 280.
Stunn : Ibid., tom. xiv. p. 286.