218 The Configurations of Rotating Liquid Masses [ch. yiii
It is now clear that for F+£« 2 (¿c 2 + y 2 ) to be constant over the surface
of the mass, we must have
V + > 2 (¿c 2 + y 2 ) = — rrrypabc 6 ^ + ~ a ~ 1 + cPoj • • .(200"4)
at all points of the boundary, 6 being at our disposal. Equating coefficients
we obtain
Ja-
Jjt-
2 тту p dbc а 2
to 2 в
J,
Б 2тгур abc b 2
в
.(200-5),
which are identical with the equations already obtained in § 190, together with
№*-**-.
On inserting the value of <f> in this last equation and equating coefficients
of a?, xy 2 , xz 2 and x, we obtain
a a ^
0 \ — v —
a e
^- e êb‘
a ‘ = e ik‘
a, = 6
.( 200 - 6 ).
a i '
If we introduce new quantities c 1} c 2 , c 3 defined by
Ci
Г 00
Jo
XdX
XdX
A A 2 G
XdX
AABC
then equations ( 200 ‘ 6 ) are found to assume the form
a. , . v /3 7 n c
2a2 (c 2 +c s ) 26 2 Cs ~ 2c 2 ° 2 — ^ a
2a 2 3 T 26 2 ' 2 i; 2c 2 1
fb> c ‘ + h (3c ’+'■>=* £; )
3a f® XdX /3
, +
XdX 7
;+ 7
/'
J 0
X,c2A.
Jo ЬД*В
i \
, 6
/3
У ..
a 2 6 4
7
a 2 c 4 '
°° dX _ f
.(200-7),
Д4
2a 2 Jo ДЛ 2 26 2 J 0 AAB^2c 2 J 0 Д40
201. The elimination of a/a 2 , /3/6 2 and 7 /c 2 from the three equations
(200-7) gives
a 2 b 2 c 2 + p + p) (0i c 2 + CiC 3 + 3c 2 c 3 )
- ~ [ci (b 2 + c 2 ) + c 2 (3a 2 + c 2 ) + c 3 (3a 2 + 6 2 )] + = 0 (201*1).