DI EUDOSSO, DI CALLIPPO E DI ARISTOTELE
105
composto di due movimenti, dei quali l’uno è quello di un
punto che si muova seguendo la lunghezza del parallelogramma,
l’altro di un punto che si muova percorrendo la larghezza
del parallelogramma in egual tempo che impiega il primo a
percorrer la lunghezza. Perchè in tal modo il punto si troverà
simultaneamente all’ altro estremo così del diametro, come della
lunghezza di ciascuno dei lati percorsi: e siccome il diametro
non è eguale alla linea spezzata formata da questi lati, ma
minore, così la velocità composta delle due sarà minore della
loro somma f 1 ). Il simile dicasi, quando rivolgendosi due sfere
omocentriche intorno ai medesimi poli, od intorno a poli diversi,
ed in direzioni contrarie, in guisa che la minore ad un tempo
sia portata dalla maggiore, e si mova (di moto proprio) contro
a quella: ogni punto della minore impiegherà a far la sua
rivoluzione più tempo, che non occorrerebbe, se fosse soltanto
invariabilmente connessa colla maggiore. Per questo la rese
zione del Sole, da un levare a un levare consecutivo, è più
lenta che la rivoluzione del -mondo, avendo esso un moto più
tardo in contrario senso. Che se invece il Sole avesse un mo
vimento uguale a quello delle fisse, la sua rivoluzione accom
pagnerebbe queste, ed esso nascerebbe sempre col medesimo
punto (della sfera stellata).
11. Premesse queste cose, Sosigene, venendo a ciò che fu
detto da Aristotele sulla necessità di aggiungere per ciascun
pianeta altrettante sfere reagenti (quante deferenti ne assumeva
Callippo) meno una, se si vogliono salvare le apparenze, espone
come segue la teoria delle sfere secondo Aristotele. Sia dunque,
delle sfere che portano Crono, la prima mossa al modo di quella
delle fisse, la seconda lungo 1’ eclittica, la terza si rivolga per
pendicolarmente all’eclittica, da ostro verso settentrione; il
circolo (equatoriale) di questa sarà perpendicolare all’ eclittica,
avendo in essa i poli, perchè si segano perpendicolarmente i
circoli (massimi) che passan l’uno pei poli dell’altro. La quarta
sfera poi, che contiene l’astro, lo muova secondo un circolo
(') Ecco enunziato qui da Sosigene il principio della composizione dei
movimenti, con tutta la chiarezza possibile. La dimostrazione di quel prin
cipio col parallelogramma era cosa nota nelle scuole. Al medesimo pure
allude Gemino, alquanto più antico di Sosigene, presso Proclo Comni. in
Enel., p. 106 ed. Friedlein. La base di queste antiche dottrine sul moto
composto sta presso Aristotele nel cap. ± dei Problemi Meccanici , dove il
teorema del parallelogramma delle velocità si trova dimostrato.