65
Burt, 1981] to
ntroduced. The
uted for every
> information is
1 governs the
'ormed sources
multiresolution
;d image by
and functions
in a variety of
id to different
of these choices
t the successive
f morphological
orm the image
led structuring
ed to define a
ical operations,
atage point of
ilify image data,
and eliminate
2 noise without
lited for shape
0 fundamental
isforms can be
1 a structuring
S be sets in N-
ples of element
îoted by B ® S
idseS} (4)
>n, that is, the
erosion of the
noted by B ® S
(5)
/o higher order
The opening of
defined as
(6)
l element S is
(7)
ing and closing
ing is followed
open operation,
ary sets though
on, f(x), dilated
(f© s)(x) = max № -y)} ( g )
,yeS
where x £ D in Z 2 , Z is the set of integers and S is a subset of
Z 2 . Effectively, dilation is a moving local maximum operator
while erosion is a moving local minimum operator defined by
(f0 S)(x) = maX № + y)} (9)
jyeS
For a MP constructed with an open-close filter, we can describe
the image I L by
Il= [(Il-i • S) ° S]
(10)
where L is the pyramid level, S is the structuring element, and
[• ]is a subsampling.
Replacing the Laplacian pyramids with the morphological
pyramids, the MP fusion scheme is shown in figure 2. 3
Image A
Image B
Fused
Ia&ce
Figure 2. The MP fusions scheme
3. EXPERIMENTAL STUDY AND ANALYSIS
As mentioned above, the two pyramid techniques of image
fusion are used to fuse multi-focus images. An image focusing
on the left (Figure 3a) and the other image focusing on the right
(Figure 3b) are two co-registered. The fused images obtained by
t e two pyramid techniques are shown in Figure 3c and Figure
• To compare the two pyramid techniques, the fused images
are evaluated in visual examination and quantitative analysis.
Figure 3a. Focus on the left
ES Magnifier Qutóty
Figure 3b. Focus on the right
ES Magnifier !
Figure3c. Fused image by the Laplacian pyramid