The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part BL Beijing 2008
101
<Kt,) = v(t, -t 0 ) + ^a-0,-t„f + ^A a ■(/,-( 0 ) 3 (7)
1 o
Where V , a and A a are the unknown mean velocity, mean
acceleration, and mean acceleration variation respectively, the
unknown model vector p in (6)is
vector and the phase velocity vector, then use the least
square (LS) method to solve the equation(lO).
4. The undesired atmosphere phase signal is detected as the
result of the cascade of a low-pass filtering step, performed
in the two-dimensional (2-D) spatial domain (i.e., azimuth
and range), and a high-pass filtering operation with respect
to the time variable.
p T = [v,a, Aaf
(8)
and the model matrix M is
M =
t\ t 0
^2 i /j 2t 0
(A *o)
(¿2-Q 3 -(ii-Q 3
6(¿2 _ h )
¿N "*■ ¿N-1 ^0 (?N A)) (¿N-1 ^0)
¿N-1)
(9)
By including this model, the equation system in (6) is generally
simplified, for such a smooth temporal model, the product
BM is nonsingular, the estimate of p can then be obtained by
solving the following equation in an optimal LS way.
BMp + c-Ah+ (f) A = 8(f)
(10)
where C • Ah accounts for possible topographic artifacts due to
error in the Digital Elevation Model (DEM) used for removal
of the topographic phase , Az is the DEM error,
c T = [(4n / 2){B n / r sin v), ■ • •, (4/r / 2)(B XM / r sin y)]
, B L is perpendicular baseline, Y is sensor target distance, V
is look angle).
The key steps involved in the displacement time series retrieval
implemented via the SBAS-DInSAR algorithm can be
summarized as the follows:*
1. Properly chosen the data pairs to generate the multilook
DInSAR interferograms, the key objective of this step is to
mitigate the decorrelation phenomena by introducing
constraints on spatial baseline and temporal separation
between the orbits relevant to interferometric SAR image
couples.
2. Phase unwrapping of the original phase 8(f) t (x, Y) , then
calibrating them to a reference pixel as mentioned
previously.
3. Assuming a relationship between the model parameter
4. RESULTS
A test site in the city Nanjing P. R. China has been chosen, see
Fig. 1. Nanjing is the capital of Jiangsu Province, in an area
surrounded to the west by the Yangtze River, to the east by
Purple Mountain. New Qinhuai River in the south and the
branches of Qinhuai River in the middle flow across the city
from west to east, the west area of Qinhuai River is a new
developed residential area which located in the stratum of the
Yangtze River valley flat, where it is easily suffered from
ground deformation.
Fig. 1: City Nanjing in SAR amplitude image, the investigated
area is highlighted
In order to validate the presented method, an ERS2 SAR data
set composed by 8 acquisitions acquired from August 19,1996
until April 10,2000, on descending orbit, was first coregistered
to the August 19,1996 scene, then we selected the combinations
that exhibited a mutual perpendicular baseline less than 100m,
and temporal baseline less than 4 years, this resulted in 2
different subsets, the 13 interferograms were generated by Doris
software (Bert Kampes, 1999), characterize by a perpendicular
baseline from 21.9m to 98.2m, temporal baseline from 35 days
to 1158 days, in order to reduce the phase noise, a complex
multi-look operation with 4 and 20 looks in range and azimuth,
respectively, is carried out, the ground range pixel dimension of
all products is therefore about 80><80m in the range and azimuth
directions, respectively , see Table l.The topographic
component has been removed using a SRTM3 DEM, which has
the height accuracy of about 16m (Bamler,1999), the ERS2
precise orbit state vector computed by the Technical University
of Delft was used for flat earth reduction.
In order to exclude decorrelated areas from the study, we
selected only the pixels that exhibited an estimated coherence
value larger than 0.3, in at least 30%of the interferograms,
based on the selected pixels, a Delauney triangulation was
generated to connect these pixes, and interpolation was done for
all the images in order to ease the phase unwrapping of the
selected interferograms, see Fig. 2.