Full text: A. L. Cauchy's Lehrbuch der algebraischen Analysis

mm . . . (m -f-2)mm(in—2) . 
608. mz — 1 — j-^sin. z 2 -j j-—^—g ^ sm.z' 
) (m+4)( m +2)m m(m-2)(m-4) . , , 
( 1. 2. 3. 4. 5. 6 X 
/ f m . (m-f-2)m(m—2) . 
I sin. 
rnz = cos. z I — sin. z 
und für ungerade Werthe von m 
(5) 
cos. m z = cos. z |^1 
(m + l)(m — 1) . 2 
1. 2 
. (m-J-3) (m-f-1) (m 
— 1) (m—3) . . 
sin z. — etc.. 
1 1. 2. 3. 
4 
, m , 
sin. in z .— — sin. z ■ 
1 
(m-f-1) m (m—1) . r , 
1. 2. 3 
(m+3)(m + l)m(m—l)(m—3) . zS 
1. 2. 3. 4. 5 
Zusatz 1. Setzt man in (3) successive 
m = 2, m = 4, rn — 6, etc.... 
so erhält man 
l COS. 2z — 1 — 2 sin. z 2 , 
* cos. 4z — 1 — 8 sin. z 2 + 8 sin. z 4 , 
(7)\ cos. 6z = 1 — 18 sin. z 2 -j- 48sin. z 4 —32 sin.z 6 , 
| etc 
Zusatz 2. Setzt man in (6) successive 
m— 1, m = 3, m = 5, etc...., 
so findet man 
sin. z — sin. z, 
sin. 3z — 3 sin. z — 4 sin. z 3 , 
sin. 5z — 5 sin. z —20 sin. z 3 + 16 sin. z 5 , 
etc. 
Aufgabe 2, Sin. mz und cos. mz (wo rn eine 
beliebige ganze Zahl bezeichnet) in ein nach den 
- u
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.