328
Zweiter Teil. Integral-Rechnung.
und
(16) R = + 0 = ■
Durch neuerliche Differentiation von R nach l ergibt sich
die zweite Ableitung von V in der Richtung OP, und zwar
ist für einen Außenpunkt
tv dlt d°V Sttqä 3
^ M ~ ~dl = ~ 1P = W~ ’
für einen Innenpunkt
(!8)
d*V 4 tcq
di* =
Die Figuren 170 a, b, c stellen den A r erlauf von V, R und
R' (den Beträgen nach) hei veränderlichem l im Kraftfelde
einer homogenen Kugel dar.
Fig. 170 a. Flg. 170 b. Fig. 170 c.
a) Die den Yerlauf von V darstellende Kurve besteht aus
einer gleichseitigen Hyperbel PC und einer Parabel CE,
welche in einem Pimkte C sich vereinigen, weil die zugehörigen
Gleichungen (13), (15) für l = A denselben Wert V liefern.
b) Die Kurve, welche den Verlauf von R zur Anschauung
bringt, setzt sich aus einer Hyperbel 3. Ordnung EC' und
einer Geraden CO zusammen, die wieder in einem Punkte C
Zusammenhängen, weil die zugeordneten Gleichungen (14), (16)
für l — A dasselbe R ergeben; aus demselben Grunde haben
Hyperbel und Parabel der vorigen Figur in C eine gemein
same Tangente.