Full text: Lehrbuch der darstellenden Geometrie (1. Band)

Die Kegelschnitte als Kreisprojektionen. 
233 
und G' harmonisch liegende leicht gefunden. Sind ferner B x und 
B v C x und 6' 2 , . . . Punktepaare der Involution auf g, so sind 
A 
9' 
Fig. 229. 
neue Punkte des gesuchten Kegelschnittes. 
352. Wenn eine Strahleninvolution zwei Paare rechtwinkliger 
Strahlen enthält, so ist sie eine Involution rechter Winkel. Denn 
schneidet man mit den gegebenen Strahlen auf einem durch den 
Scheitel gelegten Hilfskreise Paare einer Punktinvolution aus, so 
ergiebt sich als Mittelpunkt der letzteren der Kreismittelpunkt (und 
als Achse die unendlich ferne Gerade). Jeder Durchmesser bestimmt 
ein neues Punktepaar auf dem Kreise und das zugehörige Strahlen 
paar schließt wieder einen rechten Winkel ein. 
Betrachtet man irgend zwei Rechtwinkelinvolutionen in derselben 
Ebene, so liegt zu jedem Strahlenpaare der einen ein Strahlenpaar 
der anderen parallel, oder beide bestimmen auf der unendlich fernen 
Geraden dieselbe gleichlaufende Punktinvolution. Die imaginären 
Doppelstrahlen zweier Rechtwinkelinvolutionen sind daher parallel, sie 
gehen durch dieselben beiden imaginären Punkte der unendlich fernen 
Geraden, die Doppelpunkte der gedachten Punktinvolution. Man 
bezeichnet diese als die imaginären Kreispunkte der Ebene und 
zwar deshalb, weil sie auf allen Kreisen der Ebene liegen. In der 
That bilden alle rechten Winkel mit einerlei Scheitel die Involution 
der konjugierten Durchmesser für jeden um den Scheitel als Centrum
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.