Full text: Euclides elementa (Vol. 3)

ELEMENTORUM LIBER X. 
97 
Euclides, edd. Heiberg et Menge. III. 
7 
quoniam B X E = A X E, et Bx E medium est 
[prop. XXI], etiam AxE medium est. 
Ergo inuentae sunt duae mediae potentia tantum 
commensurabiles medium comprehendentes A, E eius 
modi, ut maior quadrata minorem excedat quadrato 
rectae sibi commensurabilis. 
Similiter rursus demonstrabimus, A 2 excedere E 2 
quadrato rectae sibi incommensurabilis, si A 2 excedat 
E 2 quadrato rectae sibi incommensurabilis [prop, XXX]. 
Lemma. 
Sit AB E triangulus rectangulus rectum habens 
angulum A, et ducatur perpendicularis A A. dico, esse 
E BxB A — B A 2 , B Ex EA = EA 2 , BAxAE=AA 2 , 
BExAA = BAxAE. 
et primum, esse EBx BA = B A 2 . 
nam quoniam in triangulo rect 
ángulo ab angulo recto ad basim 
perpendicularis ducta est A A, trian 
guli ABA, AAE et toti ABE et 
inter se similes sunt [VI, 8]. et 
A 
quoniam ASEDABA, erit EB : BA = BA : BA 
[VI, 4]. quare [VI, 17] EBxBA=AB 2 . 
13. BFA] supra add. T PF; BF, FA e corr. Y. i'ßov] 
supra ser. m. 1 P. xrjs] om. Bb. AF cp. BAF, supra 
add. A m. ree., P. 14. ET] e corr. Y. 15. hext] om. 
LBFYb. xcòv] om. P. 16. ztñv] om, P. FBA] FVb, 
B m. 2; FB LB; FAB P; FB, BA F V m. 2, P m. ree. s azi] 
om. LBFYb. 19. rá] corr. ex zr¡i m. 2 B. ABA] A in 
ras. m. 1 P. 20. AAF? L. ècziv LPB. 22. ABA] B 
in ras. Y. 23. BA] AB cp. BA] mut. in AB Y. 24. 
FB, BA cp, m. ree. P, m. 2 Y.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.