Full text: Euclides elementa (Vol. 3)

ELEMENTORUM LIBER X. 133 
2 AFxFB autem rationale [prop. XL]. dico, AB in 
nullo alio puncto diuicli. 
^ nam si fieri potest, etiam in A ita diuidatur, 
ut A A, AB potentia incommensurabiles sint ef- 
fidentes A A 2 -{-AB 2 medium, 2 A A X A B autem 
■ r rationale, iam quoniam, quo differt 2 AFxFB 
&2AAxAB,eo etiam A A 2 -j- A B 2 ab A F 2 -f- F B 2 
differt, 2 AFX FB autem 2 A A X AB excedit 
spatio rationali, etiam A A 2 -f - AB 2 excedit 
B Ar 2 -\-FB 2 spatio rationali, quamquam media 
sunt; quod fieri non potest [prop. XXVI]. itaque recta 
spatio rationali et medio aequalis quadrata non diuiditur 
in punctis diuersis. ergo in uno tantum puncto diui 
ditur; quod erat demonstrandum. 
XLVII. 
Recta duobus spatiis mediis aequalis quadrata in 
uno tantum puncto diuiditur. 
Sit AB in F ita diuisa, ut AF, FB potentia in 
commensurabiles sint efficientes AF 2 -f- FB 2 medium 
et AFxFB medium et simul quadratis AF 2 -\-FB 2 
incommensurabile [prop. XLI]. dico, AB in nullo alio 
puncto diuidi, ita ut proposita efficiat. 
BY. 61$ dqa Y. 11. rei] rd P. 12. tcoj'] (ait.) COrr. 
es td m. 2 F. 14. arjfisicc P, corr. m. 1. 15. kcc&’ BFb. 
v.ccxu — 16. ¿si|at] m. 2 Y. 16. ottsq sSel ¿'silai] comp. 
P, om. BF. 17. e corr. F. 18. f] Svo [isacc] in ras. 
m. 1 F. 19. ¿la/pstrca sis ra ovoficcza Theon (BFVb). 20. 
Svo fisace Svvccfisv?]] om. P. 23. -acu td — ¡xs60v{ mg. m. 
1 P. . rd] ro avyusifisvov £/C tcov V. 24. TK) ovyusi^isvcp] 
ego; to ovyv-sifisvov PBFVb. Post ccvtcov add. tco (corr. ex 
ro m. rec. P) Gvyzscfisvcp (corr. ex -ycsvov m. rec. P) s% tcov 
vu (corr. es an m. 2 Y, dit’ b) ccvtcov {tstqaycdvcav add. b, 
F m. 2) BFVb, P mg. m. 1.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.