Full text: Euclides elementa (Vol. 3)

APPENDIX. 
399 
oportet nomen a proprietate rationalium clari, esse 
autem AB 2 BF 2 >2 ABxBF, sic demonstrandum est. 
, | , , iam manifestum est, AB, BF 
A A B r inaequales esse, nam si aequales 
essent, esset etiam AB 2 -f- BF 2 — 2 AB X BF, et 
AB X BF et ipsum rationale esset; quod contra hypo- 
tliesin est. supponatur AB>BF, et ponatur BA —BF. 
itaque AB 2 + BA 2 = 2ABxBA-{- A A 2 [II, 7]. 
uerum A B — BF. itaque 
AB 2 -f- BF 2 = 2 AB X BF -f A A 2 . 
AB 2 -{- B F 2 excedit 2 AB X BF quadrato A A 2 . 
ergo 
Ad libr. X prop. 40. 
Spatio autem rationali ac medio aequalis quadrata 
uocatur haec, quia quadrata duobus spatiis aequalis 
est, alteri rationali, alteri medio, et propter princi 
patum rationalis primum hoc nominauit. 
Ad libr. X prop. 41. 
Uocat autem eam duobus spatiis mediis aequalem 
quadratam, quia duobus spatiis mediis quadrata est 
aequalis, AB 2 BF 2 et 2 ABxBF [u. fig. p. 119]. 
A A P. 10. ¿nó] vnó F. i'ca — 12. A A] m. 2 V. 11. 
¿nó] corr. ex vnó m. 2 F. 12. ré] to F. sAat] sari. BFYb. 
13. ¿no] corr. ex vnó m. 2 F. A A] rrjs A A b et corr. 
ex rear A A F. 14. Qrjtóv — avrr]] -AccXstxcu Ss avxri? V. 
Svvccfjisvrjv BFb, et P, corr. m. 2. ncdsuca ccvxr]] ccvxrjV 
•AoksZ BFb. 16. xr\v] xóv Y. Post nQwxov add. xò grjxóv 
BFb, m, ree. P. sv.aXscs Y. 17. kccXsZ — Svvccfisvrjv] 
ora. V. 19. ¿no xcòv] ora. V. xó] xov P.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.