Full text: [Disquisitiones arithmeticae] (1. Band)

DETERMINANTES POSITIVI NON-QU AD RATI. 
167 
Ex. Sit D = 7 9 eruntque valores ipsius a viginti duo 1,2, 3,5, 6,7.9, 
10, 13, 14, 15. Unde inveniuntur formae undeviginti: 
(1,8, —15), (2, 7,—15), (3,8, —5), (3,7, —10), (5, 8,-3), (5, 7,—6), 
(6, 7, —5), (6, 5, —9), (7, 4, —9), (7, 3,-10), (9, 5, —6), (9, 4. —7), 
(10, 7,-3), (10, 3,-7), (13, 1, —6), (14, 3,-5), (15, 8,-1), 
(15, 7,-2), (15, 2, —5) 
totidemque aliae quae fiunt ex his, si terminorum exterorum signa commutantur, 
puta (— 1, 8, 15), (—2, 7, 15) etc., ita ut omnes triginta octo sint. Sed ex his 
reiiciendae sex (+13, 1, +6), (+14, 3, +5), (+15, 2, +5), reliquae triginta 
duae omnes reductas amplectuntur. Per methodum secundam eaedem formae 
prodeunt sequenti ordine*): 
(±7,3,+10), (±10, 3, +7), ±7, 4,+9), (±9, 4,+7), (±6, 5, +9). 
(±9, 5, +6), (±2, 7,+15), (±3,7,+10), (±5, 7. +6), (±6, 7, +5), 
(±10, 7, +3), (±15, 7. +2), (±1,8, +15), (±3,8, +5), 
(±5, 8, +3), (±15, 8, +1). 
186. 
Sit F forma reducta determinantis D, ipsique ab ultima parte contigua 
forma reducta Fhuic iterum ab ultima parte contigua reducta Freducta F' 
ipsi F" contigua ab ultima parte etc. Tum patet, omnes formas F', F", F" etc. 
esse prorsus determinatas, et tum inter se tum formae F proprie aequivalentes. 
Quoniam vero multitudo omnium formarum reductarum determinantis dati est fi 
nita, manifestum est, omnes formas in progressione infinita F,F', F" etc. diver 
sas esse non posse. Ponamus F m et E m ~^ n esse identicas, eruntque F m ~'.. 
pm+n-1 re( j uc tae, eidem formae reductae a parte prima contiguae, adeoque iden- 
ticae; hinc eodem modo E m ~ 2 et 3 e tc. tandemque F et F n identicae 
erunt. Quare in progressione F, F', F" etc., si modo satis longe continuatur, 
necessario tandem forma prima F recurret; et si supponimus F n esse primam 
identicam cum F, sive omnes F', F" E n ~ l a forma F diversas: facile perspi 
citur. omnes formas F, F'. F" .... F n ~ 1 diversas fore. Complexum harum for- 
*) Pro 6=1, —7 8 in duos factores, qui neglecto signo inter y/7 9 —i et y/7 9—i iaceant, resolvi ne 
quit; quare hic valor est praetereundus, ex eademque ratione valores 2 et 6.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.